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1 Introduction

This report gives a fairly complete introduction to the Structured Singular Value( 4) and
details some of the latest results. The u-based methods discussed here have proven to be
useful for analyzing the performance and robustness properties of linear feedback systems.
This report also describes the recent nonlinear extensions.

It is assumed that the reader is familiar with the general 4 analysis framework. In this con-
text, analysis refers to the process of determining whether a system with a given controller
has desired characteristics, whereas synthesis refers to the process of finding a controller
that gives desired characteristics, usually expressed in terms of some analysis method.
This is the fairly standard usage of these terms in the control community. It should be

- obvious that the question of analysis must be settled to some degree before a reasonable

synthesis problem can be posed. The formal analysis and synthesis techniques discussed
are only some of the methods that might make up the overall process of engineering design.

The general framework to be used is illustrated in the diagram in the figure below.

A

P ——

K

Figure 1.1 General Interconnection

Any linear interconnection of inputs, outputs, commands, perturbations, and a controller
can be rearranged to match this diagram. For the purpose of analysis the controller may
be thought of as just another system component and the diagram reduces to that below

A e

d G | e

Figure 1.2 Perturbed Disturbance-to-error

The analysis problem involves determining whether the error e remains in a desired set for
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sets of inputs d and perturbations A. Analysis methods differ on the description of these
sets and the assumptions on the interconnection structure G. For now, G will be taken
to be a linear, time-invariant, lumped system and be represented by a rational transfer
function. The convolution kernel associated with G will be denoted as g, so G is a real-
rational matrix function of a complex variable and g is a matrix function of time. The
interconnection structure G can be partitioned so that the transfer function from d to e
can be expressed as the linear fractional transformation

e =F,(G,A)d =[G+ GnA(I - GuA)™ G d.

The external input d is an additive signal entering the system and is typically used to
model disturbances, commands, and noise. It is generally inadequate in modeling systems
for control design to consider uncertainty only in the form of uncertain additive signals.
The system model itself typically has uncertainty which can have a significant impact
on system performance. This uncertainty is a consequence of unmodeled dynamics and
parameter variations and is modeled as the perturbations A to the nominal interconnection
structure G. Note that the uncertainty modeled as A has a very different effect from that
of d on the performance of the system. For example, perturbations can cause a nominally
stable system to become unstable, which d cannot do.

At the heart of any theory about control are the assumptions made about G, d and
A, as well as the performance specifications on e. These assumptions determine the
analysis methods which can be applied to obtain conclusions about system performance.
A desirable objective is to make weak assumptions but still arrive at strong conclusions
and the inevitable tradeoff implied by this objective drives the development of new theory.
The control theoreticians role may be viewed as one of developing methods that allow
the control engineer to make assumptions which seem relatively natural and physically
motivated. The ultimate question of the applicability of any mathematical technique to a
specific physical problem will always require a “leap of faith” on the part of the engineer
and the theoretician can only hope to make this leap smaller.

It is beyond the scope of this report to give a thorough discussion of the relationship
between models and the physical systems they represent. Attention will be to the type
of models that arise in the u framework and have proven useful in applications. The
particular focus is on techniques that allow very precise analysis of systems which have
fairly standard performance requirements and uncertainty models in terms of additive
noise and plant perturbations. While the “best” assumptions for engineering purposes
will always be a matter of debate, it is clear that for any given set of assumptions it

is desirable to have very precise analysis techniques. The ideal would be necessary and
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sufficient conditions for the satisfaction of a performance specification in the presence of
sets of inputs and perturbations. Additionally, the conditions should be computable or
should at least yield bounds which give useful estimates of system performance. With
such methods, the engineer can focus directly on the relationship between uncertainty
assumptions and system performance without worrying about potential gaps caused by
inadequate analysis techniques.

The layout is as follows. Section 2 describes how parametric uncertainty in state space
models can be rearranged into the 4 framework. Section 3 defines x and its basic properties,
along with a few examples. Section 4 is a well known result about an exact expression for u.
Section 5 describes some mathematical preliminaries that are used in subsequent sections
concerning the computable upper bound. Section 6 develops theory for the computation
of the upper bound, and relates the upper bound to x. Section 7 explores guaranteed
relationships between the upper bound and p for various block structures. Section 8 is a
exposition of linear fractional transformations on structured uncertainties, and how both
¢ and the upper bound can describe their behavior. Section 9 gives robustness tests for
a special class of uncertain difference equations. The extension of the p-based methods
to time-varying and nonlinear controllers is outlined here. Section 10 is a frequency do-
main/small gain approach to the problem considered in section 9. Section 11 deals with
frequency domain u tests. This material is standard, and is what is usually associated
with pu. Section 12 presents counterexamples showing that the upper bound and u are
different. Section 13 describes a power-like algorithm, reminiscent of power algorithms for
eigenvalues and singular values, that can be used to get lower bounds for x. Section 14

is an illustrative example, outlining the various analysis tests and possible conclusions.

Finally, Section 15 is the appendix.
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2 Parametric Uncertainty in Components

One natural type of uncertainty is unknown coefficients in a state space model. In this
section, we will consider a special class of state space models with unknown coefficients,
and show how this type of uncertainty can be represented. In particular, we will extract
unknown quantities from a parametrically uncertain system so that the perturbations
enter the system in a feedback form, or, using the term we will later introduce, in a linear
fractional way. This type of modeling will form the basic building block for components
with parametric uncertainty.

After setting up the problem, we will proceed rather informally, manipulating some simple
block diagrams to arrive at the special representation of the uncertainty. These types
of manipulations are (either explicitly or implicitly) common to the rest of the report
particularly section 8. There, while the proofs we give are precise, they tend to hide the
key simple idea behind each particular lemma. It is useful to “draw” the block diagrams
pertinent to each result, as this makes both the result and proof clearer.

Finally, we reformulate the robustness problem which arises when controlling such uncer-
tain plants into a linear algebra problem, that, eventually, ¢ will solve. The material of
this section is motivated by the discussion in [MorM].

2.1 Problem description

We begin with an explanation of the matrix and block diagram notation that we will use
throughout. C™***¥ and R™** are, respectively, all complex and real n x k matrices. Let
M € C™*. As usual, M7 denotes the transpose of M, and M* denotes the complex
conjugate transpose. Suppose u and v are complex vectors, with v € C*, v € C", and

v = Mu. Pictorially, we will draw this relationship as

u v v u

—QM——O or Q—MO_

Figure 2.1 Pictorial Notation for Matrix-vector Multiplication

Next, suppose M € Clmtm)x(ki+ka) 5nd we partition in the obvious way as

My M
M =
[ Mn Mz ]

with M;; € Cnxk; Now if for i = 1,2 we have u; € C* and v; € C™, and furthermore
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[ U= M [ U ], then we draw this as
U2 U2
L vy Vi u,
‘Manz o ‘MuMuP_
u v
22 M, M0 S AM M "
Figure 2.2 Pictorial Notation for Partitioned Matrix-vector Multiplication
When we need the norms of vectors in C" or R", unless otherwise stated, ||-|| will represent
n

the usual euclidean norm. That is, for v € C*, with components v; € C, [|v]|? := )_[ui|*.

1=1
Also, consider a generic finite dimensional, time invariant, linear system, described by

z= Az + Bu
y =Cz + Du.

Note at every instant in time, z,y,u, and z are related by the simple matrix-vector mui-

tiplication
t)_[A B T
y]~LC D u

which in our notation is drawn as

2 IA B
u

-—{C DI

Figure 2.3 Pictorial Notation for Time Invariant, Linear System

Now, onto the problem. Consider a n dimensional, linear system Gj, parametrized by &

uncertain parameters, 6y,...,6k, and described by the following uncertain equations

= (A + ija.-m) z+ (B + f:a,-B,.) u

=1 =1 o

% % (2.1)
y= (C + Z&,C.) T+ (D + Z&,D,) u.

=1 i=1

Here A, A; € R™", B, B; € R™™,C,C; € R"**, and D, D; € R"*"«,

The various terms in these state equations are interpreted as follows:

¢ The nominal system description, given by known matrices 4, B, C, and D.
e Parametric uncertainty in the nominal description.

1. All of the uncertainty in the model is contained in the k scalar parameters
01,...,6k. Various assumptions on these parameters are possible. For the pur-

poses of this example, we will assume only two things - for each ¢, §; € [—1,1],
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and they do not vary with time, they are fixed (though in each instance that
the system is operated, the parameters may assume different values, so long as
they are in the unit interval).

2. The structural knowledge about the uncertainty is contained in the matrices
A;, B;,C;, and D;. These reflect how the i’th uncertainty, §;, affects the state
space model. By scaling the entries in these 4 matrices, the relative effect that
4; has on coeflicients is varied. Choosing these matrices is the engineer’s job,
and is based on her knowledge of the physics that have led to the state space
equations.

2.2 Linear fractional transformations

Consider the “perturbed” A matrix (or B or C or D). The jl element of this matrix is
of the form Ay + Zf-;l A‘u116"' Note, that this is an affine, linear function of the
uncertainty.

Can this model be expressed in the following form?

z = Az + Bu + Byu,
y=C1:+Du+D12u2 (2 2)
y2 = Caz + Dyyu + Dioug :
U = dlag [611,621, oo ,5},[] Y2
In other words, can we define some additional inputs, u,, and outputs, y;, so that all
the uncertainty in the equations (2.1) is represented as a nominal system, Gnom, with the
unknown parameters entering as the feedback gains that close the loop from the additional

outputs to the additional inputs? This is shown in the figure below.

u y * X
) , L A - A B B, X
— G, — = G, = —|CD D,
4 | €Dy Dy,
5,/
Y, sl |

8l

Figure 2.4 Pictorial Notation for Uncertain System

Recall the diagram for the generic linear system. Our problem is then reduced to finding
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a real matrix M such that for every set of parameters é;, the following picture is true,

. & &
I , ——p A+28"Ai B+28"B‘- —
i=0

i=]
k k u M y
. —_—— C+28,-C; D"'ES"D; _—
;: u i=l i=l Yy U, » ¥y,

4
&.}
s
S Y,

Figure 2.5 Representation of M

. In this case, Gnom would just be

g ) M SA

g Figure 2.6 Diagram for Gnom

\% Finding such an M is quite easy. Consider a matrix M partitioned in a 2 x 2 fashion as

»J
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,' below left.

! z, v, z, v,

P MM, (M, M,

! r4 v

1 2 M My M, M,

: A

3

i Figure 2.7 Pictorial Notation for a Linear Fractional Transformation

h If we close the bottom loop of this with a matrix A (as above, right), then the matrix
, relating z, to vy is

H My + M A (I = M A) ™ My

D)

! assuming that the inverse exists of course. Since our parameters enter equation (2.1) only
: affinely, we guess that our M;; can be chosen to be zero.

! Indeed, for each z, let ¢; denote the rank of the matrix

o

i Ai Bg n ™ ¢

; Pi=| gl D | eRomxem (23)
1

N

Then P; can be written as
) _[ L R 1T
y P = W, Z (2.4)

“
Y where L; € R™%, W; € R"*%, R; € R™%, and Z; € R™x%,
) Hence, we have .
L; .
6P = [ W, ] [6:14] [ ]Zz: ] . (2.5)

»
) and therefore “our” M;; + M1,AM,,, which is
' k k
A+ Z&.‘A,‘ B+ Z&,‘B{

i=1 i=1
: k k
; i=1 i=1

in fact looks like

)
'
X M1 Mi2 a M2,
, ‘TA B ‘+ Ly - Li | [6da RY ZT
: C D W, - W, ) :

&1y, RT zT

¥ P 3 CADO W 1 3 ] . ) " AN SR % 1%
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Therefore, correct definitions for the matrices By, Cy, Dyg, D3, and D5, are

Bz=[1L1 Ly -+ L |
Du={W, W - WkTJ
C:=[Ri R - Ri|
D21=[Zl Zy - Zk]T

and Dy = 0.

The uncertainty is contained in the block diagonal matrix A. We define the “block struc-
ture” associated with this system as

A= {dlag [511,“, ey Bquk] 16 € [—1, 1]} (26)

Note that if we had not done the rank reduction (equations 2.3, 2.4, and 2.5), then this

structure would, in general, have much larger dimensions.

How would an uncertain parameter enter in a multi-rank way? Consider a system with
several different components, each of whose models are affected in a linear fractional way
by an something external to the system. For instance, the force/torque producing effec-
tiveness of an airplane’s controllable surfaces (rudder, aileron, canard), are affected by
ambient dynamic pressure. Suppose that for each surface, the model of its effectiveness
has dynamic pressure entering in an affine, linear fashion. Then each surface has an un-
certainty associated with pressure. Since these different surfaces affect the airplane in
different manners, there is no way to isolate the effect of dynamic pressure as one scalar
bbp. Several of these identical scalars are necessary, and together they form a repeated

scalar block.

Remarks: Recall that the uncertain parameters entered both the state equations and
ouput equations in an affine, linear fashion. There is a more general model of un-
certainty which also leads to the “feedback” representation found in equation (2.2).
Each entry in the state space matrices can be a fraction of affine multilinear
combinations of the uncertain parameters. For example, a particular per-
turbed entry of one of the matrices may look like

fnom + f15162 + f263
14 h162 + h2516253

(2.7)

where the f’s and h’s are known, and represent how the uncertainty affects the

matrix entry (our example in this section has all of the A’s equal to 0).

These models for uncertainty are called linear fractional, and will be explored
more in section 8 and 9. Unfortunately, the added generality in (2.7) as compared
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to (2.1) introduces some difficulties ~ the nice uncertainty rank reduction procedure .:f
(equations 2.3 - 2.5) becomes quite difficult. In fact, it is equivalent to finding - C
minimal realizations of multidimensional (several independent variables) systems. LY,

In some simple problems, it is easy to extract the minimal number of uncertainties

R A
2D

by inspection. More generally, it is possible that an uncertainty structure much
larger (parameters entering many times) than is really necessary is obtained. From

a computational viewpoint, this is undesirable.

Y|

AL
EEALA™ LSBT

Also note that any linear connection of several uncertain components (inputs to

Py
A

separate components being linear combinations of outputs of separate components)
will have exactly the same form: all of the parametric uncertainty can be isolated in

a block diagonal “feedback” around a known, fixed system. @ g

'.:

Now, to motivate p, and the theorems in section 8, suppose we are given an uncertain B :i..
plant in the form (2.2), and a linear, time invariant, finite dimensional (LTIFD) controller 'L
that stabilizes (feeding back y to u) the nominal plant. Under what conditions does it :

o
( : A

stabilize all of the perturbed plants? First, let the stabilizing controller be governed by
é = A.{ + B.y ;u = C.{. We have chosen it strictly proper just to simplify some of the
equations (all of the robustness questions can be addressed for controllers with D terms).

{“N

Define the following matrices e o
W
[ a BC. [ B g o
My = [ B.C A.+B.DC. ] Mz = [ B.D;, ] 28) E:;

)

M = [ Cy; DyC. ] Mj; := Dy, (2.9) R

-

With 7 := [ 2 ], it is straightforward to check that the perturbed closed loop system is {S »
LIS PR %

Mll MZZ @ r‘:
s i
| A .
Figure 2.8 Pictorial Notation for Perturbed Closed Loop System NN
Hence, to guarantee robust stability, we need to verify that for all A € A (recall A is the

appropriate uncertainty structure, equation 2.6), the eigenvalues of the matrix .SS*
‘ !
My + My (I = My A)™" My, (2.10) o

N

are in the open left half plane. Alternatively, if the problem had been formulated in discrete -~

time, then the condition would involve making sure the eigenvalues remained inside the < S
! [yt
unit disc. Actually, this type of test is more directly handled by u. The u test (Theorems AR
3
- XN

N
»

o
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)
9.1 and 9.7) is applied to the whole matrix M, and involves not only the structure A Ef:},
representing the uncertainty, but an augmented structure which makes sure that the Py
/ test checks the largest eigenvalue of My, + M, A (] — Mng)'l M3, and not a different :: '
. quantity, such as the maximum singular value of this perturbed matrix. This is made “"::
‘ clearer in section 8 and 9. As we have mentioned though, computation of u is difficult, .:::::
and that is the real issue in using any of the results. “'
§ e
.«':-,. '
R 2.3 Real vs. complex perturbations o
' 7
N All the theory presented here is appropriate for robustness analysis with complex per- 'i‘
1". turbations, and not for real perturbations (as in the example in this section). Hence, ..':!:.
the typical assumption we will impose on the é; in A in (2.6) is actually é; € C,|§| <1 .!'::
" for each i. That is, instead of viewing them as fixed unknown real parameters, they are :::H' :
treated as fixed unknown complex parameters. As we will see in section 11, this is also ®
Y equivalent to treating them as stable, finite dimensional, linear time invariant systems, f
R with |§;(jw)| < 1 for all w € R. Therefore, if a particular problem has uncertainty that "‘_ .::.§
is definitely real and not dynamical (ie. complex), the methods here will be conservative, :,:5;:;
since the smallest offending (destabilizing) perturbation will almost always be complex. ry
. It is often very natural to model uncertainty with real perturbations, when, as in this :‘:_::':
' section, the real coefficients of a differential equation model are uncertain. It is important, ‘(‘: :f
however, to remember that such parametric variations are in a model, not in the physical : s
. system being modeled. Models with real parametric uncertainty are used because, in prin- '_.
; ciple, they allow more accurate representation of some systems. Complex perturbations .'-A 3
R are typically used to represent uncertainty due to unmodeled dynamics, or to “cover” the 0.:
1 variations produced by several real parameters. In the u framework, complex uncertain ! '
. blocks also arise for problems of robust performance. )
R Although computation of u for complex perturbations is nontrivial and there are important 0:
p outstanding issues to be resolved, as indicated in this report substantial progress has been }r '.i;
! made and y is being applied routinely to large engineering problems. Computation of u o
for real perturbations is fundamentally more difficult than for complex perturbations. ‘
\ M
The major issues in computing u, or its equivalent, are the generality of the problem :1..":&
’ description, the exactness of analysis, and the ease of computation. With existing methods ":':::E
for real perturbations, you get to choose two. A general and, in principle, exact method is ‘e |

a brute force global search using a grid of parameter values (e.g. Horowitz, Ackermann).

This inevitably involves an exponential growth in computation as a function of the number

Y
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- Il
_Tf of parameters and taking fewer grid points to avoid this gives up exactness. Progress "
i is being made in reducing the computational burden of exact methods ([deGS], [SidG], e
p [SidP]), but nothing suggestive of polynomial-time algorithms is available. o g
't An approach to obtaining exact results with modest computation is to restrict the problem S:‘ .
" description. The best example is Kharitonov’s celebrated result for polynomials with v :
, coefficients in intervals. Unfortunately, it is almost impossible to find models with any 3
E, engineering motivation that fit the allowable problem description. Again, progress is being g ;
:' made in this direction by allowing more general uncertainty descriptions at the expense of o 4
: more computation. o o
B The approach taken in [FanTD) could be characterized as being very general and computa- . g
:, tionally attractive, but potentially inexact. Following the methods developed for complex Eé A
:: i, the main idea is to get upper and lower bounds using local search methods which are X
U

computationally cheap, but may fail to find global solutions. One then seeks to prove that

o
L

the local methods yield global solutions, or that the bounds one gets are tight enough to

’ be of value in problems of interest. This strategy has been very successful for complex u ;.Q )
! and appears to have promise for the real case as well, although it is clear that the real case )
" is much more challenging.
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3 Structured Singular Value N

3.1 Definitions

This section is devoted to defining the structured singular value, a matrix function denoted
by u (). We consider matrices M € C**". In the definition of u (M), thereis an underlying
structure A, (a prescribed set of block diagonal matrices) on which everything in the
p sequel depends. For each problem, this structure is in general different; it depends on
! the uncertainty and performance objectives of the problem. Defining the structure

involves specifying three things; the type of each block, the total number of blocks, and
their dimensions.

There are two types of blocks-repeated scalar and full blocks. Two nonnegative integers, s
and f, represent the number of repeated scalar blocks and the number of full blocks, respec-

tively. To bookkeep their dimensions, we introduce positive integers ry,...,7,; my,...,my.
p The 1’th repeated scalar block is r; X r;, while the j’th full block is m; x m;. With those
¢ integers given, we define A as

A = {diag [6:],..., 8], A1,...,Af] : § € C,Aj € C™*™i ) c C*n (3.1)

For consistency among all the dimensions, we must have

3 f
) Zr,~+2mj=n.

=1 i=1

Often, we will need norm bounded subsets of A, and we introduce the following notation

BA={AeA:5(A)<L1} (3.2)

Note that in (3.1) we have put all the repeated scalar blocks first. This is just to keep the
notation as simple as possible, in fact they can come in any order. In any case, we will
see that every problem can always be set up (by rearranging rows and columns of M) so
that they appear first, so we are not losing any generality in this formulation. Also, the full
blocks do not have to be square, but restricting them as such saves a great deal in terms
of notation. This restriction is without loss of generality, since i for nonsquare blocks can

, be converted to u for square blocks by adding rows and/or columns of zeros to M.

Definition 3.1 For M € C™*", (same dimensions as the elements of A) pa (M) is defined

1
Ha (M) = i (5 (&) det (1 + M3) = 0} (3:3)

f unless no A € A makes I + MA singular, and then pa (M) = 0.

. i \ ~ Y ") [ y ) W e t A% 3 W W T T W T W W N P KT )
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An alternative expression follows almost immediately from the definition. :
—
)
— -1.‘ ,‘\-
Lemma 3.2 pua (M) = Joax p(MA) ‘
e
N
In view of this lemma, continuity of the function g : C"*™ — R is apparent. In general, :::
though, the function g : C"*"® — R is not a norm, since it doesn’t satisfy the triangle ~
inequality. However, for any a € C, u(aM) = |a|u (M), so in some sense, it is related to Y ‘;
how “big” the matrix is. t;d
We can easily calculate ua (M) when A is one of two extreme sets. > O
)
| ¢ 3
e IfA={6l:6€C} (s=1,f=0,r,=n), then pa (M) = p(M), the spectral radius %
of M. G
D
Proof: The only A’s in A which satisfy the det (I + MA) = 0 constraint are neg- ) "
ative reciprocals of nonzero eigenvalues of M. The smallest one of these is 2 !
associated with the largest (in magnitude) eigenvalue, so, pa (M) = p(M). § ()"} ¥
\
l.:
o If A = C™" (=0, f=1,m;=n), then ua (M) = & (M) flr 89
Proof: If 5 (A) < a—(lM—), then &(MA) < 1, so I + MA is nonsingular. Applying . ‘:‘
equation (3.3) implies pya (M) < &(M). On the other hand, let u and v K )
be unit vectors satisfying Mv = & (M)u, and define A := “H}Vﬁ”“'- Then My
g(A)= a(}w) and I + MA is obviously singular. Hence, ua (M) > 5 (M). § = X
Obviously, for a general A as in (3.1) we must have ;j :
PR
¥ ¥
{1:6eC}cAacCY™ (3.4) )
=K
Hence directly from the “minimization” in the definition of g, and the two simple cases . :‘\
above, we can conclude that ol
)
p(M) < pa (M) < (M) (3.5) e
13
£ §
These bounds alone are not sufficient for our purposes, because the gap between p and .::
& can be arbitrarily large. We refine them by considering transformations on M that do v "
not affect ua (M), but do affect p and 6. To do this, define the following two subsets )
of CﬂXﬂ
L
0 ={Qea:QQ=1I) (3.6) 2
~
Iod '
.
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D = {diag [Dy,..., Dy dilm,,...,dsIn,| : D; € C*™ is invertible,d; # 0} (3.7)

3 Note that for any A € A,Q € Q,and D € D,

4 RQreQ QAeA AQedlA 35(QA)=5(AQ)=5(A) (3.8)
' DA =AD (3.9)
; Consequently, we have:

;a Theorem 3.3 ForallQ € Q@ and D € D

., #a(MQ) = pa (QM) = ya (M) = pa (DMD™). (3.10)

Proof: Forall D € Dand A € A,
det (I + MA) = det (I + MD™'AD) = det (I + DMD™'A)

since D commutes with A. Therefore ua (M) = pa (DMD™1). Also, for each
Q€ @,det (I + MA) =0 if and only if det (I + MQQ*A)=0. Since Q*A € A
o and 7 (Q*A) = 7(A), we get ua (MQ) = pa (M) as desired. The argument for
QM is the same. §

o
" -

l'
o Therefore, the bounds in (3.5) can be tightened to

< < inf & -1 .
. max p(QM) < pa (M) < inf 5(DMD™) (3.11)
0 An important question is “when are the bounds in (3.11) actually equalities?”. This
N question is a nontrivial one, and a large portion of this report is devoted to answering it.

The results we will subsequently show are

e The lower bound, maxp (QM), is always equal to ua (M). Unfortunately, the func-

s tion {(Q) := p(QM) has local maxima which are not global, and computing the
global maximum of such functions is, in general, impossible.

'g o In contrast to the local phenomena described above, the function u(D) := 6 (DM D)
) does not have any local minima which are not global, so computing Dig% & (DM D'l) :
is a reasonable task. In general though, ua (M) < inf & (DMD"). For certain N

Deb. * . . o °

block structures A, equality always holds. The general situation is summarized in it
D the table below. :':'::
K ) !
) O]
R

4
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> - -

Ty

- -

= (V] 1 2 3 4
§I, =
o yes yes yes no
easy Sec. 7.1.1 Sec. 7.1.3 Sec. 7.1.2

1 yes yes no no

easy Sec. 7.2 Sec. 12.2 Sec. 7.1.2 no
2 no

Sec. 12.1 no no no no

When is the upper bound, Di&i; o (DM D‘l), always equal to u ?

The section number in each box indicates where the detailed analysis can be found

in this report.

3.2 Simple results & special cases

In this section, we derive simple expressions and bounds for 4 in a few special cases. We
begin with a class of matrices for which we can derive an easy, explicit expression for pu.
This will be done directly from the definition, independent of the upper and lower bounds
just described.

Theorem 3.4 Let ny,n,,m; and m,; be positive integers, and consider matrices of the

0 M,
P (3.12)

where M,z € C™*™2, My, € C™*™ and the zero entries are of the appropriate dimensions.

form

Consider a perturbation set A of the form
A = {diag[A1,Ag] : A € C™X™ Ay € Cmaxnz}
ie. two full blocks. With respect to this structure,

(M) = /5 (My2) & (May).

Proof: Let M be any matrix as in (3.12), and let A € A. It is straightforward to verify
that det (7 + MA) = det (I — My Ay MpAs). Denote /& (My2) & (My) by 7, and
suppose that A € A is chosen with (A) < % Then & (M3 Ay M24;) < 1 which
means that I — M,;A; M;,4; is nonsingular, and hence I + M A is nonsingular. This

gives a lower bound on the “minimum” part of the definition of u, namely

) 1
= . = >
min {3 (A):det (I + MA) =0} > ”

£

5]

-,
e

(48]

23
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Obviously then, from (3.3) W

p(M) <y (3.13) o
Actually (3.13) is an equality; to see this let u,%,v and ¥ be unit vectors of appro- i-_‘ 1
¥ priate dimension that satisfy

\.
"
~ = ~ g
Mpv=3Mpz)u , Mud=05(My)i A,

I Define the dyads )

X Let A = diag[Ay, Ag]. Obviously &(A) = 1, and (I — My A, Mi,4,) & = 0, hence e
I + M A is singular, and therefore p (M) > 7. { o

The same result was proven in [NetU], using a main result of [Doy]. Here, we used only Wi

¥ the definition of u and simple linear algebra. AL

The next example gives a easy-to-compute upper bound for rank deficient matrices with R
s arbitrary block structures. o

v Theorem 3.5 Suppose M € C™*" has rank r, r < n. Then we can write M = LR", s
e where L, R € C™*". Partition L and R compatibly with the block structure as X

w 'LlT 'le |

L, A
L= K, R= Sl (3.14) N

s Kf _ L S'f .: E o
[ so that L;, R; € C"*" and K;, S; € C™*". Then s

u (M) sZ&R‘ +Z (S) 7 (K;). e

Proof: Forany A € A o :"

X det (] + MA) = det(I+ LRA)
_‘ det (I + R*AL) o
\ (315) :-'*
W det(I+Z6R‘L +ZS‘AK) 5

=1 i=1

If, for some 3 > 0, we can show that A € A,5(A) < % implies that

-?&h :
(Z&R‘L +ZS"A K) 242

i=1

'._'f\-’

1.." ‘

O
N, 1 W h) 0 i JOTATONY S AN A" 3 ) AN 0 "?
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then for all those A, det (I + MA) # 0 (by (3.15)) and hence u < 8.
It is easy to find such a 8. Suppose that A € A and
1

s 7
DG (RIL) +3_5(S;) e (K;)

=1 =1

g(A) <

Then

s ! s !
s (E SRILi+ ) S;A,-K,-) <Y |&|o (R7L:) + E a(A)a(S;)a(K;) <1

i=1 i=1 i=1

s !
Therefore 4 (M) <Y & (R;L:;) +Y_5(S;)a(K;).

i=1 i=1

Theorem 3.6 Let M € C**" be given, and suppose that M has rank equal to 1. Write
M = LR*, and partition L and R compatibly with the block structure as

[ Ly [ R,
L, _| R,
L= K. R= S, (3.16)
L Kf J L Sf J
so that L;, R; € C"*! and K;, §; € C™*1, Then
s f
p (M) =3 |RiL]+ 2 1IS;1 I1;]l- (3.17)
i=1 =1

s !
Proof: For notational simplicity, let ¥ := Y |RIL:| +Y_ ||S;|| || K;}l. Obviously from
i=1 =1

theorem 3.5 we already have y < 4. With M a dyad, we will actually show that
it is an equality. For each ¢ < s, choose ¢; € C, [g;| = 1, so that ¢;R!L; is a real,
nonpositive number. Similarly, for each j < f, choose a unitary matrix @Q; so that
S3Q;K; = —|IS;|| |1 K;}l. These two steps can always be done. Suppose that v # 0.
Then define

1 ..
A= 5 diag [qilr,,-- ., qsLr,, @1, ..., Qs € A (3.18)

1
By construction, & (A) = ot and [+ MA is singular, therefore ua (M) > 7, so using

theorem 3.5, we get the equality as claimed. §

------
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4 Proof that lower bound achieves p !
*
Recall the two bounds we derived in section 3.1. .'o,::i
. - -1 |."0".0
‘ max p(QM) < 4(M) < jof 5 (DMD™) S
A main result of [Doy] is that for any block structure A as defined by (3.1), the left hand i ..
side of the bound above is actually an equality: ;—: '{
\1. A (]
' Theorem 4.1 Let A be a given block structure, and let the set Q be defined by (3.6). ,:;:N;
Then for every matrix M of appropriate dimensions, °
W
s
#(M) = maxp(QM). (4.1)
€Q o,
.:a.'"
We begin by stating a well known result from complex analysis called Rouche’s theorem _J-.‘
[Rud]. Rt
-
Theorem 4.2 Let I' be a simple closed contour in the complex plane, C. Let f and g be RN
functions which are analytic inside and on I'. If |g’2)] < |f(z)| on T, then f and f + ¢ nhd
have the same number of zeros inside I'. . ":. A
Yoy
B . . . . "I' N
R This is used in proving the next lemma, which is the well known result stating that the ." :“:
roots of a polynomial are continuous functions of the coefficients of the polynomial. LEAN!
o
vy
1 .
Lemma 4.3 Let f(z) = Y a;z* be an n’th order polynomial, a, # 0. Let 7,2, ... ,z, ",
be the zeros of f. For any € > 0 and any integer m > 0, there exists a 6, > 0 such that ‘::.L:
if g(2), defined by PO
m ; .
x 9(z) = ;)biz ; I'*t
= oy
, has coefficients b; € C which satisfy |b;j| < 8, then there are n zeros of f + g, labeled W
2, 2,... , 2, that satisfy |z; — %| < e. Di
-2
’ Hence the zeros of f depend continuously on the coefficients of the polynomial (even oy 8
; leading coefficients which are zero). :’,,:j i
'
aNOh
Next, we shift our attention to polynomials in several dimensions, that is, polynomials ":.
taking C* — C. If z € C*, we let ||z]|o := max |z;|. For p:C* — C, a polynomial, define o
/Bp as - 0.:::
) By = min {||z||e : p(z) = 0} (4.2) é
NN
)
) VSN
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By is the norm of the “smallest” zero of the polynomial. The next lemma is from [Doy]. "

R

Lemma 4.4 Let p be a polynomial from C* — C. Define §3, via (4.2). Then there exists Ul
a z € C* such that |z;| = 8, for each i, and p(z) = 0. ’\"; :
p: LI (
H

Proof: Let 2 be a minimizing solution, so p(2) = 0 and ||Z]|e = B,. If |%| = B, for all 4, - )
then we are done, so assume that |2,| < 8,. Now we can (always) write <2 4
n . ;:_\ ::
p(z) =Y pi(z1,- e s Zrmty Zrny e 5 2) 2L (4.3) = .
=0

)
where the p; are polynomials in all the variables except z,. “E ::I
¢
For notational purpose, we denote p; as the polynomial p; evaluated at # (of course, *‘:
it doesn’t depend on Z,), that is ;‘.\“. b

)

ﬁi:=pi(él7~-'aér—l,2r+la"-1ék) \ e
8
and we let L denote the set of integers {1,2,...,r— 1,7 +1,...,k}. 0
Py ¢
There are three situations we need to consider: LOW.

)
v WY
1. Suppose that for every i, p; = 0. Then, regardless of the value of ,, p(%) = 0. y
In particular, the magnitude of 2, may be adjusted to be 8, and z will still be R\ ‘1::
b LG

a root of p.

2. Suppose that py # 0, but p; = 0 for ¢ > 1. Quick checking reveals that this is

e
o

not possible, since then p(z) # 0 as we need.

3
L]
3. Suppose that for some : > 1, ; # 0. Then 2, is a zero of the nontrivial ;'C |
n , ‘q »
polynomial g(2,) = 3 _pizi. Let € > 0 with |3,| + € < 8,. By the lemma, we Y
=0 )
can find a 6 > 0 such that if |§; — p;| < 6 for each 7, then the polynomial SN
n i o >
d(z,) :== ) _gz, would have a zero %, satisfying |z, — 2,| < e. Since the p; are * o
1=0 = R
continuous functions of their £ — 1 arguments, we can find a § > 0 such that if S
|G — 2| < & for all i € L, then there is a z, with |z, — 2,| < ¢, such that )
' n y o
Zpi((h"'7<r—11Cr+1a~-'1</¢) r =0 “
i=0 -
U
]
- "
v
.:y' ,
%

\J
¢
\J

. s e - - - o . o e
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In particular, we could choose all the (; to have smaller magnitude than the

respective 2;. Therefore the point
( G W
Cr-—l
z | e C*
<r+1

G

has || - ||oo < Bp, but is a root of p(z). This contradicts the definition of S,
hence this situation cannot occur.

Therefore, we have shown that if 2 is a minimizing solution, ie, ||2||cc = B, Where
B, = min {||2||s : p(z) = 0}, then we may as well assume that each of the components
of # has magnitude equal to S,. {

This is the lemma necessary to prove that the lower bound is an equality.

Theorem 4.5 Let A be a given block structure, and let Q be defined as in section 3.1.
Then for every matrix M of appropriate dimensions,

max p (QM) = p (M)

Proof: This is obvious if (M) = 0, so we will assume that 4 (M) > 0. Let A€ A bea
minimizing solution, so det (I + MA) =0, and &(A) = u_(}"’f)' Do a singular value
decomposition on each block that makes up A. This gives U,V € @, and a diagonal
Ye A, such that

det (I +MUEV*) =0

Since ¥ € A and is diagonal, it appears as
S = diag (b1 1,,,... , 6,1, 61, ..., 6]

for some complex numbers §; and &;, and w = 23-;1 m;. (recall the j’th full block is
m; x m;, hence each full block contributes m; of the a’s)

Consider s + w complex variables, z;,... , z,4,. Define a variable ¥ by

L=diagz1]r, - 2 dry, Zet1s - - 5 25t w)
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Then det (I + MUZV*®) is a polynomial on C***, since the determinant involves
only multiplications and additions. By hypothesis, a minimum norm root of this
polynomial has an infinity norm (as defined above) of -‘T(lﬁ; =: 4. Let ¥ be the
minimizing root with all components of equal magnitude, namely 4. Then we can
write & = y® for some ® € Q. This gives

det (I + YMUBV*) = 0.

[ == -

Obviously p(MU®V*) > u(M), and the product UPV* € Q, so we are done. {

g
Koo

«l
" -

A

2

A o R ]

ok B A o

{5

L

e

e

L= 29

. - -
OROROU T D O T Mo i M i AT S




Sty Ry Ve g A, Sl et a0 h fah 6 R AT R A A AR e A DR Fal B Ga Fu8 Gah e el v ah s eV e Ay 4ve Alg bia gt *0ad" @al Bu? $a¥ #20 $2¥ 02V 0a'ats &t g g .\"..

t Jﬁ
o
% o
1t
w ::.c
: . o
5 Preliminaries for study of upper bound oy
gt
@
V' o
The next major undertaking is a careful study of the upper bound: its computational prop- W \
: M
H erties, and the relation between i and the upper bound. The purpose of this section is to .:::::
, N
> collect some mathematical facts that we will need. All of the upcoming material appeared :::::;
3% 4
first in {Doy], although the theorems for the upper bound there are less general. Here we ®
n@' eneralize the theorems in [Doy] to include block structures with repeated scalar blocks. RN
4 g "
Initially, we will focus on the & (DM D~1) upper bound and begin by reparametrizing it. .‘1:::
. Y
%"l y '.:':‘
. 5.1 Reparametrization of the upper bound e
i ‘::t,:‘
)
) For the sake of computation, and proving some theorems, we must eliminate a degree of ":2:'
o freedom present in the D’s as they are defined now. From now on, we will assume that vl
there is always at least 1 full uncertainty block, so that f > 1. The case with s > 2 and ~’:
e f =0 is handled separately in section 12.1. .:j '
e he
First, note that for any nonzero a € C, and any D € D, \‘.';
564
7(DMD™) =& ((aD) M (aD)™). (5.1) e
AON
; Hence, in calculating the infimum, we can use this scaling, and without loss in generality, f‘.%
Y always assume that d; = 1. Since we will have occasion to use it again -though, we will ".::.:
now refer to the original set D as defined in (3.7) as D,. -"‘
R
W In addition, we may assume that the other d; are positive, and the D; are positive definite. 0::'3
To see this, take D € D and do a polar decomposition, D = UP with U unitary and "::
. Y
g P = P* > 0. Obviously " .:-
8 5 (DMD™) =5 (UPMP™'U") = 5 (PMP™) (5.2) N
' ol
by the unitary invariance of . Hence for any D € D, there is a positive definite, hermitian :":',:';
t}: Dy € D that achieves the same 7. Therefore, the following definition for D, o:::c:
D, = {diag [Dy,..., Dsydilm,,... dg-ilm,_,, Im,| : Di = D" € C™%% > 0,d; > 0} 2
. . ~||
b (5.3) e
‘ leaves the infimum the same. Note that implicitly, the last block has d; = 1 as we . .:::
()
) indicated above. '::n'
@
We do one further reparametrization via logarithms. Recall that Wi
i ."."
re - mxm " . ]
o {ew W=W"e C"‘x"‘} = {D : D = D* € C™*™, positive definite } (5.4) :::::0
i,

- - e
o™ ¥ ot
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n
N
:,"
st
§:;:‘ This simply says that the set of exponentials of all hermitian matrices is equal to the set
"‘ . . . .
) of positive definite, hermitian matrices. The obvious block diagonal version of this fact
W allows us to redefine D as
i}
s‘l
A D :={diag [Dy,... , Dsydilmys... ydg_rfm,_,,0m,] : Di = D" € €%, d; € R} (5.5)
(N
W
) and the upper bound as
v ¢ = (oD Afo-D
:}5: pa (M) < géfva (c Me ) (5.6)
o
:::3 We note that D is a finite dimensional, real (scalar multiplication must be real) vector
i space.
(1 g. .
o 5.2 Convexity of the Upper Bound
o
BN
- In this section, we prove that the reparametrized upper bound is convex in the variable
:E; D. Therefore, any local minimum is also global minimum. Hence gradient optimization
" methods, which can yield local minima, can be used to nonconservatively compute the
.’o' P
:c'.: upper bound for u. The first proof of this can be found in [SafD]. Here, we take an
approach from {ChuD].
b
' .ps . . .
::: Definition 5.1 Let X be a vector space. A function f:X — R is convex if for every
:',:. z,ye€X, A€ [0,1]
fFAz+ (1 =-Ny) <Af(z)+(1-X) f(y)
."
4
0 The next lemma gives a sufficient condition for a continuous function to be convex. It is
iy fairly intuitive and is taken from [ChuD]. The proof is in the appendix.

o
-
5 -

Lemma 5.2 Let f:R — R be a continuous function, and suppose for each t, € R, there

KX exists a twice differentiable function g;,: R— R, such that f(t,) = g..(t,), f(t) > g.,(t) for «w
\) .
o allt € R and d—;;’,"-lt_t > 0. Then f is a convex function. rj
I . _ 2
K We apply this to our situation. &
W

Q"

Lemma 5.3 For every D € D, the function f:R—R, f(t):=& (eD‘Me‘D‘) is convex.

A
L5 O

-
e
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Proof: We just need to verify the hypothesis of the lemma. Let ¢, be given and let u,,

and v, be complex unit vectors, of appropriate dimensions such that °
R

SO0
' uj Do Me=Dloy, =5 (eD'°M e D ‘°) . .':::',
',3'; I'.‘i’
."."" W
For later use, we will let o, denote & (eD‘°M e'D"’), and M, := ePtoMe—Dto, ;,":::
..;,. Define ¢;,: R— R by ."
gto(t) = Re [uzoeDtMe_DtvtO] (5.7) ?_.
. Yrr
{:. Obviously, f(t,) = gt (o), and for all t € R, f(t) 2> g¢,(t). Differentiating (5.7) twice 3’ iy
bl gives ol
. d’g., « . -
M 2 [ up D vy D ] o,] —M; Du,, ot
o) di? | _ (5.8) o
& t=to -M, o1 Dv;, fhyti
0

‘ )
s Recall that &(M,) = o,, hence the matrix in (5.8) is positive semidefinite, and KR

N d2 7.
therefore g;° > 0. By Lemma 5.2, f is convex. § in
Ry dt t=t, , :.,of

Trivially, we wrap this all up with

Lemma 5.4 Consider the function h:D—R, h(D) =& (eD MeP ) Then h is convex.

Proof: Let D, and D, be arbitrary elements in D, and let A € [0,1]. We need to show

;\ that
h((1 = A)Dy + ADz) < (1 — AYh(Dy) + Ah(Dy) -~
::: Define f:R—R by f(t) := h((1-8t)Dy +tD;) = & [eD‘ (eD‘ Me"D‘) e‘b‘] where 3
) D is defined D := D, — D,. Now, f is convex by Lemma 5.3, therefore for every :
b tel0,1] .,;:
, 4
- () S (L= 0f(0) + (1) (5.9) &
l".‘
'x_ Note that f(0) = h(D;) and f(1) = h(D;). Therefore, setting ¢t = A in (5.9), we "':
have o
R k(1= A)Dy + AD;) < (I = \)A(Dy) + Ah(Dy) (5.10) ;“i_,,
' A
as desired. § 23!
%3
o
A
g l: :
u g

2

¢
-

l;‘l
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5.3 Directional derivatives of coalesced singular values

The minimization problem for the upper bound is discussed here. We calculate the first
derivatives of singular values of e?*Me~P* for given D in D. The resulting formula will be
used in section 7 to find a D € D such that for ¢ > 0, sufficiently small, & (eD Me-P ) <
o (M), in other words, a descent direction for &. Iterating on this is a method to calculate
the upper bound. In general, the minimization for the upper bound will drive the top
singular values together, since we are minimizing a “max” function. Therefore, we must
carry out the derivative calculations for coalesced singular values (ie. multiplicity greater

than 1). Derivatives of distinct singular values are just special cases of the following results.

A result {rom perturbation theory, ([Kat] for the theory, [FreLC] and [Doy] for this appli-
cation) that we will use freely is that if T:R— C"*" is an analytic function mapping the
real line into hermitian matrices, then there exist analytic matrices U(:), and A(:), such
that for all ¢, U(t) € C*™™, U*(t)U(t) = I, A(t) € R*™*", A(t) diagonal, and

T()U(t) = U()A(2). (5.11)

In other words, the eigenvalues of an analytic hermitian matrix are analytic, and there
is a choice of orthogonal analytic eigenvectors as well. We use this result to derive an

expression for the derivatives of nonzero singular values of an analytic matrix.

Let W:R— C™™ be an analytic function of the real variable ¢. Suppose o is a nonzero
singular value of W(0) with multiplicity . Then o? is a eigenvalue of W(0)W*(0), also with
multiplicity r. Hence, there are analytic functions U,(-), Us(+), Za(-), and As(-),e > 0, such
that for all ¢ € (—¢,¢),U,(t) € C™ ", Uy(t) € C™*(*=7) S (2) € R™*", Ay(t) € R(v=")x(n=r)
with both X, and A; diagonal and nonnegative for ¢t € (—e¢,€). At t =0, £,(0) = o1,, and
none of the diagonal entries of A,(0) are equal to 0. We also have that for all t € (—¢,¢)

Us(t) -
[ Ur() ] [ Ua(t) Us(t) | = Laxn (5.12)
and
W(t)W*(t) = U, (t)Z2(t) U2 (2) + Us(8)As(t) U5 (t) (5.13)

We want to calculate the derivatives (at ¢ = 0) of the r singular values which are coalesced
at o at t = 0. Of course, these are just the diagonal entries of 2,,, which itself is diagonal.
Roughly speaking, we will differentiate (5.13) to get an explicit formula for %,.

Dropping the explicit ¢ dependence, and post-multiplying (5.13) by U,(t) we have

WWwW*U, = U,X? (5.14)

o
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Differentiating this gives
WW*U, + WW*U, + WW*U, = U,£2 4+ U, 3. Z4 + U, E.5.
Premultiply this by U, and evaluate at ¢ = 0. Recall that at t = 0,X, = ol,. Hence, at
t=0
UrWW*U, + UWW*U, + 6*U2U, = *U*U, + 205,

Two terms cancel, and since o # 0 by assumption, we are left with

3 1 = (17 - 17

£ = 5-U; (Ww* + W) U, (5.15)

Actual computation of the derivatives requires one additional computation. Consider a
singular value decomposition of W(0),

W(O) = UUlI/? + ngzl/; (516)

Since the singular vectors associated with repeated singular values are not unique, U,
need not be equal to U, (0). But, both have orthogonal columns, and they span the same
subspace in C", therefore, there is a unitary matrix K € C™" such that

U,(0) = U1K (5.17)
Substituting (5.16) and (5.17) into (5.15) gives
KE.K* = % (U WV, + Ve W) (5.18)

Since K is unitary, this is a similarity transformation, hence the derivatives of the r singular
values coalesced at o are the eigenvalues of

5 (W + VoW,)

Let us do the above calculations for the special case we need.

Theorem 5.5 Suppose W(t) is of the form eP*Me=Pt where D € D and M is given.
Obviously W(0) = M and W(0) = DM — MD. Hence if

W(0) =M =oclU Vi + U5,V (5.19)

then the derivatives of the clustered singular values at o are the eigenvalues of
A oU; DU, — V"DV, (5.20)
In particular, let Ay, Az,..., A, be the eigenvalues of Uy DUy — V*DV; . They are real

because this matrix is hermitian. At a nonzero value of t, the r singular values that were
o at t = 0 satisfy
U;(t) = 0(1 4 /\,'t) +g,~(t) (521)

where lim g_,(t_) =0.
0 ¢
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Hence if we can find a D € D with all the eigenvalues of U;DU, — V"DV, negative,

then by moving a small amount in that direction, all of the singular values in the cluster

will be reduced.

After reviewing some results from convex analysis in the next section, we will address the
problem of finding a D € D such that for small ¢, all of the singular values in the cluster
are reduced. As we have shown here, this is equivalent to finding a D € D such that all
the eigenvalues of Uy DU, — V"DV, are negative.

5.4 Convexity

This section is devoted to some simple results from convex analysis which will subsequently
be used to find D € D such that all the eigenvalues of U*DU — V*DV are positive. This
gives a descent direction for & (eD Me-D ) . All of the results here are from [Roc].

Let X be a real, finite dimensional vector space, with inner product (-,-) : X x X — R,
and let V be a compact subset of X. The main question this section addresses is “does
there exist a point £ € X and # > 0 such that rréi\x}(:i', yW=>p7r

14

The following definitions and results are standard.

Definition 5.8 A subset V C X is convex if Au + (1 — A\)v € V for every u,v € V and
A€ fo,1].

Definition 5.7 For a subset V C X the convex hull of V, co (V) is the smallest convex
set containing V:

coW)= (| F (5.22)
FOVv

Fconvex

Lemma 5.8 For all V C X, co(V) is convex. If V is convex, then co(V) = V. IfV is
compact, then co(V) is compact.

Lemma 5.9 The convex hull of V C X is all finite convex combinations of points in V.
That is n o
co(V) = {Z az;:meEN,a; €[0,1),) =1,z € V} (5.23)

i=1 =1

Lemma 5.10 Let V be a compact subset of X. Then there is a unique point z € co (V)
such that ||Z|| = min {|jy|| : ¥y € co(V)}. When clear, we denote this as % = min (coV).

-------
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Lemma 5.11 Let V be a compact subset of X, and let Z € co (V) be the unique minimizer
desribed above, ie. ||Z|| = min {|ly|| : ¥ € co(V)}. For any z € co(V), (2,%) > ||z|*.

Lemma 5.12 Let z € X. If ||z|| > ||min(coV)||, then there is a y € V such that
(z,9) < |l=|l?.

PP gy

These give rise to the main theorem.

Theorem 5.13 Let V be a compact subset of X. There exists £ € X such that mei‘x}(a%, y) >
v
0 if and only if 0 & co (V).

The minimum point of the convex hull of a set V can be found via an iterative algorithm,

due to [Gil]. Important extensions of this are found in [Wol] and [Hau]. All the algorithms

J have one main computational requirement: for each z € X, we need to be able to generate
a point y, € V such that

‘:: (T,yz) = I;‘lé{)l(.’t, y) (5.24)

Note since V is closed, there always is such a y,, though it may not be unique.

The algorithm from [Gil] is as follows: Define a sequence {z;}-, in the convex hull of V
via the following rules:

L)

a.1l Pick any point z, € coV. In particular, z, can be any element of V.
N a.2 Given z, pick y; € V to minimize the inner product as above in equation (5.24).

a.3 Define z;+; = minco {z;,y;}. Obviously, z;;; € coV. Return to a.2.

d
l:‘
Hauser’s algorithm [Hau] makes a more intelligent choice for z;,;, using not only z; and y;,
:" but past values of y; as well. It is a generalization of Wolfe’s algorithm [Wol| for polytopes.
In any event,
’ ‘
N Claim: The sequence {z;} converges to the minimum point in the convex hull of V. W,
®
T -
Proof of claim: Obviously, the sequence {z;} has [[z;+1]| < |[zi| for each i. Therefore 'Ez '
" both sequences {z;} and {y;} are bounded, hence we can choose a subsequence {n;} so :}‘.‘F
that z,, % 7 and Yna %, §. Since both coV and V are closed, we have z € coV and gev. }é ,:
' By continuity, and step [a.2] of the algorithm, it is easy to show that (z,7) = ngg(i‘,y) L."
y
Now suppose that Z # min (coV). Since Z € coV, we have by Lemmas 5.10 and 5.12 that :
1.4 LY ‘J
" (z,9) < ||2]?*. (5.25) R,
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Consequently, ||Z|| is larger than ||min (co {Z,7})||. Let € > 0 be the difference.
e :=||Z|| - [min(co {2,7}) || > 0 (5.26)

Now the function min(co{-,-}): X x X — X is a continuous function. Hence there is a
integer K such for all £ > K,

llmin (co {zn,,yn, }) || — % < |lmin (co {2, 3}) | (5.27)

W IO

This implies that for all £ > K

A

- . €
2]l > limin (co {2n,, ya D | + 5 (5.28)
which contradicts that the sequence {||z;||} is nonincreasing. Therefore Z = min (coV).

Finally, it is an easy fact to show that if {z;} is a sequence in a compact, convex set,
G, with the norm satisfying ||zx+1j| < ||2]| for all integers k, and there is a subsequence
{zn,} converging to min (G), then in fact, the sequence itself is convergent, with limit of
course being min (G). Hence the sequence we generate, {z;}, does indeed converge to the
minimum point. §

et e v o

In the next section, we consider the problem of finding a matrix D € D, such that all
of the eigenvalues of U;DU; — V*DV; are positive. Recall from Theorem 5.5, this is
equivalent to finding a “descent direction” for the function & (eD Me™P ) This problem
can be formulated naturally into a “minimum point in convex hull” formulation as we have
covered here. We also show that finding a point y, € V that minimizes the inner product
(z,y) can be cast as a hermitian eigenvalue problem.

M

- " . . o !
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6 Upper bound and the structured singular value

6.1 Finding Descent Directions for the Upper bound
6.1.1 Defining a Generalized Gradient Set

Our problem of finding a D € D such that all the eigenvalues of U*DU — V*DV are
positive can be attacked using the convexity results from the previous section. The results
are quite nice, and computationally tractable. The motivation comes from [Doy], though
this section generalizes the results there.

We consider square matrices, C"*", and a compatible block structure A, with integers
T1y...5Tsy, Ma,...,mys defining the dimensions of the blocks, as outlined in section 3.1.
Define X to be the following set of block diagonal, hermitian matrices:

X := { diag [Z1,...,2Z,, 21,...,2-1): Z; = 27 € CT¥¥7 25 € R} (6.1)

This is a real inner product space (of dimension Y"7_;r? + f — 1) with inner product
defined by
PTeX (P,T):=tc(PT) (6.2)

which, in terms of the blocks that make up P and L is just

R i-
(P,T) =Y tr(PT:) + lejt,- (6.3)

=1

Remark: When there are only full blocks, s = 0, then X is the set of (f — 1) x (f — 1),
diagonal, real matrices, with the obvious inner product. In those instances, we will
identify X with R/-!.

Recall the definition for D in (5.5). Let D € D be given. Then D looks like

D = diag[Ds,..., Dy, dilm,,...,ds1In;_,,0m)] (6.4)

e
%
"
X

=

where D; = D} € C™*" and d; € R. Associate to this D € D, a D € X by setting

-

ro
L o

-

D = dlag [Dl,...,D,, dl,...,df_l] (65)

Note the natural one to one correspondence between the elements of D and X.
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P

;" Now, let M € C"*" be given. If the maximum singular value of M, &, has multiplicity 3
(]

' equal to r, then M is v

N M =35UV* + U,Z,V; (6.6) »

,l

K where U,V € C*™", U*U = V*V = I, U,V € C*0*) UzU; = V;Vy = Ln-y), and g ;
\

! %, € R(-Nx(=) i diagonal, positive semidefinite, and none of its diagonal entries are y

; equal to 7. r\-}

K Recall that we want to find a D € D such that all the eigenvalues of U*DU —~ V*DV are b

\ positive, or in other words, Ay > 0. Using Theorem 5.5, for such D, then with ¢t < 0, -

! sufficiently small in magnitude, 120

G (eD‘Me"D‘) <d (6.7)

and hence computation of the }32% a (eDM e D ) depends on finding these D.

e B

For notational purposes, partition U and V compatibly with A as

1
' T Ay ] " B Wl
: ] £ §
K : :
A | A, _ | B, :
K U= E; V= F, (6.8) ‘s.: d
¢ : : R
3 { E; | | Fy | ?r
¢ |
B! ¥
! where A;, B; € Ci*X", E; F. € C™Xr, .
! 3D
3 With this notation ™ o
h s f-~1 :: (_>
" U*DU —V*DV =) (A;D;A; — B!D;B;) + > d; (E.;'EJ - F;’F}) (6.9) wt
° i=1 J=1 )
Ll
, 0
" Therefore, since this matrix is hermitian, Amin (U*DU — V*DV) is just “w o
7. s f=1 > |
P Amin = rgg 7" [Z(A;D,.A,. — BfD;B;) + Y d; (E;Ej ~F;F)|n (6.10) Ll
n = = 9
l fimii=t L= = v
V‘j 't
g
' Exchanging the order of multiplication, and taking traces yields the equivalent form ]
B , o u_-_‘
Ain = min |5 tr [Di (A A7 = Ban* BY)] + 30 d; o™ (BSB; = FyF)n| . (6.11) g
; =1 =1 - 3 B
1 N "
: e U
{

. e kP kgt -
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This can be rewritten using inner products as A ‘:.
Amin = min (D, P") (6.12) o,
neCr NGO
IInli=1 \.'f\ :
i
where P" € X is defined by . !
P! := Ajpm*A* — Ban*B; N
c(pep — em 6.13 °
ol =" (EJE; - F{F,)n. (6-13) >
e
Let Var C X be the set of all such P". That is ;\ 4
Var i= { ding [Pl,e o, PI By pla]  PRypl asin (6.13),n € O, Il =1}, (6.14) =4
Recall that when r > 2, the matrices U and V' (which in turn define A, B, E and F above) i’ "
are not unique. It is easy to verify that the set Vj; does not depend on the particular :.\
choice. :"‘E"
- o
Then, for a given D € D (and corresponding D € X) we have ‘?':
P
~ SN
Amin (U"DU — V*DV) = min (D, P). (6.15) h
PeV N
3
iyl
Hence, it is the set Vs that determines whether or not there is a D that gives Ay > 0. K,
The next theorem follows directly from equation (6.12) and Theorem 5.13. '._g:'

Theorem 6.1 There ezists a D € D such that Apin (U*DU — V*DV) > 0 if and only if

FA?
J@ Z2ZX7,

0¢&g co(Vn).
e
4 t
I'| :
ﬁ If 0 € co(V) then for every D € D, Amin < 0 and Amax > 0. Hence to first order, the s
maximum singular value either increases or stays the same (we are at a stationary point). : Y
By convexity of & (eD Me™P ), we see that we are at a global minimum. To summarize: o
)
:

Theorem 6.2 5(M) = jnf (ePMe™P) if and only if 0 € co(Va).

NN

f§_1
&
L' 4

On occasion, we will abuse the notation Vj, adopted above. When the matrix in question,

oy

in this case M, is clear from the context, we will drop the subscript and just write V. o

Finally, we address the problem of computing the point of minimum norm in the convex bot!
hull of V. As mentioned in section 5.4, for each D € X, we need to be able to find a °
Pp € V) that achieves

(6.16)

X R MR
S
5
i
=1
5
>
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fs: This is quite simple. Let D € X be given, and let its components be D; for i = 1,...,s

L]

’ and d; for j =1,...,f —1. Then ®

. L

§ - : =Y

; il=1 &=L ik , R

& ~~

A, w

" ::"*

2 Obviously, the numerical value of this is just the minimum eigenvalue of the hermitian in

i.' matrix W. Let 7, € C” be any unit length eigenvector associated with this eigenvalue, -

:' then o

arg min (D, P) = diag [P[™,..., P, pl*,...,p}*,| € Vy (6.18)

“\ PeVu ‘*

e where the P’s and p’s are defined as g: ‘

) (

. P™ .= A, *Ar - B; *B? <

o 1 :7)w77w t 1”“/"!1} T q f

‘ w (e x 6.19 N

: Pl =" (EfE, = F{Fy) mu. (619 :
for each ¢ and j. o )

i <

' Using this formula, and the algorithm in [Hau], we can find the minimum point in the =

% convex hull of Vs as desired. ’;

% -

ry 6.1.2 A Property of V when M is real =

i «
If the matrix M is real, then the minimum point in the convex hull of V is real. We will 8

. prove this, and then see the implication it has on computing zi)ré% g (eD Me™P ) Roughly 5

y speaking, each block of the optimal D € D can be chosen to be real, symmetric. . 8

t ) )

i 4 4

3 Theorem 6.3 If M is real, then for any block structure A, the minimum point in the :

:: convez hull of V is real. g '

:' |

‘l

, Proof: Since M is real, both U and V in the SVD of M may be taken as real. Now ;53 :

recall the algorithm to find min (coVys) as described in the last chapter. We can m

b pick z; to be any element of coVys. If we choose an arbitrary real unit vector 7;, &
e then our initial point z; is real. Obviously then, the point y; may be chosen real il
w
too. Simple induction gives that with this choice of z;, the entire sequence {z,} is v

real. It converges to the minimum point, which therefore must be real. §

: =
" . Wl

This leads to the next theorem. hn

“.f
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Theorem 6.4 Let Dg be the set of real, symmetric members of D. If M is real, and the
nfimum

inf & (ePRMe™0R) (6.20)

Dr€Dr
is achieved, then in fact

grel;)&(eDMe‘D) = inf &(eDRMe'DR) 4 (6.21)

DgreDr

We make a conjecture that this is true even when the infimums are not achieved, but the
details are not worked out here.

Conjecture 6.5 Let Dp be the set of real, symmetric members of D. If M is real, then

inf & (ePrMePr) (6.22)

inf & (eDMe‘D) =
DeD DR€DR

6.2 When py=25

The results of this section relate the upper bound to p.

As usual, let A be a given structure, and let M be a given complex matrix. In the last
section we showed that #(M) = inf & (eD M e‘D) if and only if 0 € co(V). A natural
question is: “When does 6{M) = pa(M) ?”. The answer, which will link the upper bound
and p together, is the subject of the next theorem. Again, the set V plays a crucial role.

Theorem 6.6 5(M) = ua(M) if and only if 0 € Vy,.

Remark: This is exactly the result obtained in [Doy]. [Doy] however only considers
structures with full blocks (s = 0). This section generalizes that result to structures
with repeated scalar blocks as well.

Proof: For the proof, we follow the style of [Doy], and prove the equivalence of four
statements:

1. 0€ Vuy

2. There exists n € C", |ln]| =1 and @ € @ such that QUn = Vy
3. There exists £ € C*, (]| =1 and @ € @ such that QM = &¢
4. 3(M) = pa(M)

S v
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1 — 2: From the definition of V, (6.14), 0 € V), implies that for some n € C7, [[n|| =1

Amm* A" = Bnn*B* =0 i<s

6.23
77" (E;"E; — F;"F;)n=0 j<f-1 (6.23)

Obviously, for i < s, there is a phase e’® such that /% A;np = By, For j < f —
1, [E;nll = || Fjnll, so there exists a unitary matrix @; such that Q;E;n = F;n. The
only thing left is the last full block. Since ||Un|| = ||V7|| we must have ||Esqy|| =
([Fynfl. This gives a unitary matrix @y with Q;Eyn = Fyn. Arranging the phases
and @’s in a block diagonal fashion gives statement 2.

2 — 1 : This follows along the lines of 1 — 2.

2 — 3 : The matrix M has a SVD of M = gUV* + U,X,;V;". Hence QM(Vn) = aQUn =
oVn. Defining £ = V5 gives statement 3.

3—2: ASVDof QM is
QM =5(QU)V* + (QU)Z, V7 (6.24)

If QM¢ = G¢, then € must lie in the subspace spanned by the right singular vectors
associated with . Hence there is a vector 7, satisfying £ = V. Obviously ||7|| = 1
and

QU1 =QUV't = ZQME=¢ =V, (6.25)

3~ 4: QM¢ = o€ implies that pa(M) = maxp (QM) 2 p(QM) > 3(M). However G is

always an upper bound for 4 hence we must have equality.

4 — 3 : This is obvious by Theorem 4.5. (u(M) = xggé(p(QM)) 4

Theorem 6.6 is extremely important in determining when the upper bound gives u. The
idea is to find D, € D such that 0 € co(V, popre-0.). This can in principle be done using
a steepest descent method, and the facts about V in section 6.1. Then, we know that

p(M)=p (eD°Me"D°) < Ii)x;%& (eDMe‘D) =q (eD°Me‘D°) . (6.26)

If, in fact 0 € V_popfe-po, then by Theorem 6.6 we must have

7 (eD°Me'D°) =g (eD"Me'D") (6.27)
so that
— 5 ( o0 -D
p(M) = ll)relfva(e Me ) (6.28)
\“" "V‘; ",\'1'{'{'.‘ ALl ) ' ¥, { R . .".". y . TN > 0, '. "‘r‘
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Therefore, if the block structure A imparts the property on V such that 0 € co (V) implies
0 € V, then we will always have up (M) = Ii)ré%& (eDMe‘D).

A technical point we have not addressed is when the “inf” is not achieved. In that case the
above reasoning cannot be used directly, since we never actually get 0 € co (V). However,

everything still works (this proof also rigorizes the above arguments):

Theorem 6.7 If the block structure A has the property that 0 € co(V) always implies
0€V, then ua (M) = jaf 7 (ePMe~P).

Proof: Let § = infa (eDMe‘D). Let D, be a sequence in D such that & (eD"Me‘D")
converges to B as k — oo. Denote W), = eP*MeP*. Since the sequence W is
bounded, it has a convergent subsequence with limit W. Obviously, by continuity of
& and g, (W) = B and u(M) = u(W). We claim that 0 € co(Vw). Suppose not,
then there exist D € D and € > 0 such that & (eD We'D) = B — €. Choose k so that

|We ~W| < éﬁ’ where & (-) denotes condition number. Then

le® (Wi - Wy eP)| < = (6.29)

which yields

|ePWieP|| < B~ % (6.30)
This contradicts that 8 was the infimum, hence indeed 0 € co(Vw ). By hypothesis,

this means 0 € Vi so by Theorem 6.6, u(W) = a(W). Recalling continuity, we get
pa(M) = 3 as desired.}

In the section to follow, we will determine some structures for which the hypothesis of
Theorem 6.7 always holds. Therefore, for such structures, the upper bound will always

equal p.

To conclude this section, consider the minimization over the D’s. Typically, since we are
minimizing the mazimum singular value, the top singular values tend to coalesce, so that
at the minimum, the multiplicity of & is greater than or equal to 2. This is typical of
any “min max” problem. Suppose though, that at the minimum, & (M) was distinct.
Obviously, since we are at a minimum, we must have 0 € co(V). But if the multiplicity

of & is only 1, then V is a single point, and hence V = {0}. This reasoning gives:

Corollary 6.8 If, at the minimum of & (eDMe"D), the mazimum singular value has mul-
oy . _ Y — D -D
tiplicity of 1, then u (M) = min & (e Me )
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7 Properties of the set Vy,

With the machinery presented in the last section, we can now explore the relationship
between the upper bound an yu for a variety of block structures.

Y

7.1 Block structures with no repeated scalar blocks

&5

g o

We begin with block structures having no repeated scalar blocks, that is, when s = 0. All

s

material here is taken from [Doy] and [MorD] and is included for completeness.

=

7.1.1 2 full blocks

, -
-

3

The situation with two full blocks is relatively simple. Referring back to (6.13) and (6.14),
we see that V will always have the form

A
- - l.’.‘

V={n"(E"E-F'F)y:9€C",|n| =1} (7.1)

fo

for some given r > 0 and E, F € C™*". Since E*E — F*F is hermitian, V is just a closed
interval in the real line. Obviously, this is always convex, so if 0 € co(V), we in fact have
0 € V. Hence by theorem 6.7 we have:

% =

Theorem 7.1 If A consists of two full blocks (s =0, f =2), then

14

e

pa (M) = inf 5 (ePMeP). (7.2)

PEL LA

Remark: The two block case was first solved in 1959 by Redheffer [Red]). His approach
is quite different. Interestingly, it uses a form of Schauder’s fixed point theorem,

4723

[DunS] and hence does not boil down to just simple linear algebra. Similarly, the
method of proof here uses the analyticity of eigenvalues of an analytic matrix, which
is also a nontrivial fact. It would be quite nice if simpler proofs existed, but none

are known.

Also, this is a fairly simple thing to compute. Recall that for two full blocks, there is
only one free parameter in the set D, consequently, the computation is a one dimen-
sional search on a convex function. The only drawback is that the cost evaluation is
a & evaluation, which while not exceedingly difficult, is nonetheless time consuming.
Note that a search need not involve gradient calculations, hence the code can be
quite simple.

-
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7.1.2 4 full blocks

Consider the case when A consists of four 1 x 1 blocks, so s =0, f =4, and m; = 1 for
each j. Let a, b, and ¢ be positive real numbers, d and f be complex numbers, and 1; and
1, be real angles. Define matrices U,V € C4*2 by

a 0 0 a
b b b -b

U = c jC 9 V = .C —]C (7.3)
d f emf ei2d

For the time being, suppose that these are both unitary matrices, so that U*U = V*V =
I,. Later we will actually assign the correct values, but at the moment we just assume
this is already done. Then define M € C**4 by

M =UV* (7.4)

With the assumptions of unitariness on U and V, (7.4) is a singular value decompostion
of M. M has two singular values at 1, and two singular values at 0. With respect to
the block structure A that we have defined, what properties does the set Vs have? In
particular:

o is0 € co(Vp)? If so, then },25, o (eDM e"D) = 1, otherwise, it is less than 1.
o is 0 € Vp? If so, then u (M) = & (M) = 1, otherwise it is less than 1.
Since the multiplicity of the maximum singular value is 2, we can parametrize all unit

vectors in C?, and get a parametric representation of Vjs. It is easy to see that any vector
n € C?, with ||n|| =1 is of the form

_ d¢’ cosd
1= ei® sind
for some real ¢,, @, and 8. As it turns out, V,; depends only on the difference ¢, — ¢,,
which we will denote as ¢.
Simply plugging in for the definition of Vs from section 6.1.1, we get
a®(cos?@ —sin? 4
Vm =< | 4b* sin cosd cos ¢
4c? sin 6 cos 8 sin ¢

€R3:¢,0€R} CR? (7.5)

It is apparent that 0 € V. That would require (from the first coordinate in (7.5)) that
§ = 2&tly, for some integer n. The second and third coordinates being zero would then
require both cos ¢ = 0 and sin ¢ = 0, which is impossible. Hence 0 € Vs, and (M) < 1.
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On the other hand, setting 6 = 0, and then 6 = %, gives that both [a? 0 0] and [~a? 0 0] )

are elements of V. Consequently, 0 € co(Vys). Therefore ]
i
152%0 (eDMe'D) =g(M)=1 rﬁ :
&)
In order to complete the counterexample, we must choose the free variables so that U and
V in (7.4) are unitary, as we said we could. In fact here, we will choose them so that Vj, !;'_‘; :
is the boundary of a ball in R?, centered at the origin. The radius happens to be 5—&5 2R
This particular choice of parameters was obtained via alot of algebra. ;_-‘:
i

Set y=3++v3 and B=+3-1 and define

Q
I
S
"
Sl
o
I
Sl
NCR R =5

= —y]—- , = (1 + y —
» f=(01+7) 5
" T .
:. d)l =35 ’ ¢2 =T &
o 2 L
»
L Some algebra later, we conclude t?é'c V is the set of all z € R?, such that ||z|| = #

e %

Obviously, 0 € Vs, but 0 € coV . Extensive searching over the set @ in the lower bound
formula (recall that while the lower bound is always u, unfortunately, it is not a concave

&2

;: function, so gradient methods yield only local maxima) has revealed that for M defined
L
\ above, u (M) is approximately 0.874.
¢
; Therefore, for the 4 full block problem, as opposed to the 2 full block problem, in general, &
i p(M) # gréfv g (eD M e‘D). Since the full blocks in this counterexample are 1 x 1, they
v‘
) may be viewed as repeated scalar blocks as well. Therefore this counterexample proves :.:,, !
X that for every block structure A satisfying s + f > 4, in general, we will have ”
7 =
Y inf & (P Me-D N
L u(M);éll)rex%a(e Me ) 2
> }::
! 7.1.3 3 Full Blocks h
& In view of the 2 previous sections, the only case with s = 0 that we don’t know about is
‘: 3 full blocks. In this section, we will prove that indeed, V is always convex, and hence for o
oty every matrix M, the infimum upper bound is equal to u. Recall that if A consists of 3 A
‘ full blocks (s=0, f=3), then V is of the form
R)
"\ *H , "
: V={[Z.H;Z]eR’:neC,”n“:l}cR’ (7.6) & 3
W R
R oF
.l
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for some integer r, and hermitian matrices H; and H; € C™*". Obviously, if r = 1, then
the set V is a single point, so it is convex. The next 3 lemmas will show thai for any
positive r, this is also convex.

We begin with some notation from {Doy]. For any positive integer r, we define the sets
Pr:={zeC":|z|| =1} and §" := {v € R"*' : ||v|| = 1}. i Hy, H,..., H, are hermi-
tian matrices in C™*", we define a function fy:P™—R? by

n*Hin

7" Han

Fuln) = € RY (1.7)

1" Hyn
for each n € Pr.

Lemma 7.2 Let q be a positive integer. Let ai,c; € R, and b; € C fori=1,... ,q. For
each 1, define a hermitian 2 x 2 matriz H; by

a; b,'
Hi:=[5i C']

Then there ezists a vector d € R? and a matriz V € R7*3 such that
fa(P)={d+Vu:ue s?}.
where fy is defined in (7.7).
Remark: In other words, the image of P? by fy is the image of an affine linear map on
the unit disk in R3.
Proof: First, we parametrize the unit ball in C? as
_ | €“cosd
T= 1 ei¥sind
for some real w,, and 6. As it turns out, only on the difference w — ¥ is important,
and we denote this as ¢.

........
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Then, for any one of the particular H;, and for any n € C?, with |[5]| = 1 we have

. _ [e77“cosb e ¥sind| [a b] | e™cosh
n"Hn = ) b e

e’V sin

= acos?0 + csin?d + 2[Re(b) cos ¢ + Im(b) sin ¢] cos §sin 8
atc a—c : . (78)

= %24 27260520 + 2[Re(d) cos ¢ + Im(b) sin @] cos f sin 6

2 cos ¢ cos @ sin §
2 sin ¢cos@sind

9_12£+ [&—_C Re(b) Irn(b)] [cos20 ]

Note that the vector
cos 26
2 cos ¢ cosfsin §
2 sin ¢ cos 8 sin 6

is a parametrization of S?. Hence setting d; := %4<% and the i’th row of V, v;, to
v; = [ gzt Re(d;) Im(b) ]
proves the lemma. §
Lemma 7.3 Let d € R? and V € R**3. Then the set Gy = {J+ Vu:ue 52} is
convez.
Proof: Let u;,u; € S? and let A € [0,1]. Obviously
AMd+Vu) +(1=2) (d+ V) =d+V Oy + (1 = Nug) .

Now ||Au; + (1 — A)u,|| £ 1. If it is equal to 1, we are done. Otherwise, we can add
to it a vector w in the null space of V' (note because of the dimensions, V always has
a nontrivial nullspace) so that uz := Auy + (1 — AM)uz + w € S%2. Then

AMd+ V) +1=2) (d+ V) =d+ Vus € Gy
Hence, for ¢ = 2 and r = 2, the set f(P?) € R? is convex. For a block structure with

8 =0, f =3, the set V is always of the form f(P") € R? (ie. ¢ = 2). Recall though, that
in our application, r is the multiplicity of the maximum singular value. Concievably, this

can be anything, hence we need to generalize the above reasoning for r > 2. This is easy.
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Lemma 7.4 Let r be any positive integer. Let Hy, H, € C™*" be hermitian matrices.
Then the set

r *H r
fa(P)={[ T | eR?nec, ol =1} (79)

1s convez.

Proof: Let 7;,7; be unit vectors in C™ and let A € [0,1]. With fg defined in (7.9), we
need to find a 3 € P" such that

fu(m) =Afa(m)+ @1~ A)fu(n).

Without loss of generality, suppose m1 # 72. Choose orthogonal vectors z,y € PT
that span the same two-dimensional subspace as that spanned by 7, and n,. Define
two hermitian matrices H; and H, € C**2 by

ﬁ;:=[;:]H.- [z ¥]-

Using these two matrices, and the definition of f in (7.7), we can naturally define
a function fz:P?— R? From Lemma 7.3, we know that the set fz (P?) is convex.
Since z and y are orthogonal, the matrix [zy] € C™? is unitary, and there are
vectors (1,(; € P? such that 7; = [zy](; for each ¢ = 1,2. Therefore, for each i,
Ju (1) = fz(¢). Now by convexity of fz (P?), there is a (3 € P? such that

A (G) + (1= Nfg (&) = fz (&)

Let n3 € PT be defined by n; := [zy]{s Note that fy (n3) = fz((3). Therefore,
Afa (m) + (1 = A)fu (n2) = fu (n3), so that fy (PT) is indeed convex as claimed.}

7.1.4 Summary for block structures with s =0

The last three sections have shown the well known results for block structures with only
full blocks. These results were alluded to in the top row of the table from section 3.1. As
we noted in section 7.1.2, the counterexample for 4 full blocks is also a counterexample for
other block structures, since the full blocks in the example were 1 x 1 and could be viewed
a repeated scalar blocks as well.

It is not know what the worst ratio of u over the upper bound can be. The 4 block
counterexample in this section has a ratio of approximately .874. Extensive computational
experience has failed to reveal another example which is worse, even for much higher
number of blocks. There has not yet been a physically motivated example where the ratio
was more than .98.
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v The situation when there are also repeated scalar blocks, s # 0, has not been been studied

as extensively. One of these structures is the topic of the next section.

) 7.2 Block structures with s # 0

RS8 Jal

. As we saw in the last section, when s = 0 and f < 3 (3 or less full blocks), the set V), is ? ,
R itself convex. Therefore for that block structure, x (M) = 2,2% o (eDM e P ) In addition, g

" there also exist 4 block examples where 0 € co(V) but 0 € V. Of course, by the previous

" results, g # gxétz" & in those instances. 1.? \
w Until now, the case of repeated scalar (s # 0) blocks has not been investigated. In section a3
i: 6.1.1, we defined the correct V,; set to obtain descent directions for & (eDM e‘D) when ‘
! repeated scalar blocks are part of the block structure. Then in section 6.2, we showed X
i that 0 € Vs if and only if 4 (M) = & (M), a result previously known for the case of all :

. full blocks. In this section, we continue with structures having repeated scalar blocks, in

A particular, we consider a block structure of one repeated scalar block, and one full block. E_\

:: Recall the definition of Vs, equation (6.14). With this structure, the set Vs will always “
! be of the form o N
: V = {Am"A" - Byy"B" :n € C", |[nl} = 1} (7.10) =

: for some given r > 0 and A, B € C"*". It is easy to see that in general, V is not convex. 2
e: For instance, take A = I and B = 0. Then V is all norm 1 dyads, but in general, a convex % \
1 combination of norm 1 dyads is not a norm 1 dyad, so V is not convex. However the '
§ following (which is all we need) is always true. :*5,

%

. )
': Theorem 7.5 Let V be defined as in (7.10). If0 € co(V), then 0 € V. @ :
¥

i\ Proof: Suppose that 0 € co (\Z) Then, for some integer p, there exist nonnegative E.z )
f a,t=1,2,...,p with Za,—=1 and vectors 7;, ¢ = 1,2,...,p with ||p;]| = 1 <
:\E such that ':1 ;"':

; Z; a; (Ann*A* = Bnin,"B*) =0 (7.11) 3
¢ = \

which is rewritten as

o P

A (Zp: am,-n,-‘) A*=B (f: a,-n,-n.-') B (7.12)

=1 i=1

- - -

Since the a; are nonnegative, and not all 0, the dyad summation in (7.12) is a positive

I

semidefinite matrix that is not zero. Let X¥ be its hermitian, positive semidefinite
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square root. Therefore :

AXtxtA* = BXxixiB (7.13)

»

®
Hence, there is a unitary matrix V such that \
AXY = BXtV (7.14) 4

Let v be an eigenvector of V (with eigenvalue €% ) such that X%v # 0, and define 2
u := X*%v. Note that u is nonzero. This gives ¢

TE 55 TR

Au = ¢’ Bu (7.15) gt

which implies that 0 € V. 7
o

e

What implication does this have? Obviously for this structure, u (M) = ziJIé'fD ol (DM D‘I).

Precisely, let M be a given matrix, partitioned as

My M, ]

M21 M22

"&’5

-

=R

and suppose the dimensions are M;; € C™*"™ and M;; € C™2X™1, Define A as

"

A = {diag [61111. 3 AQ] . 61 € C, A2 € le)(m2}

®

) ‘.
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h
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! 8 Linear Fractional Transformations o
) —

¢
¥ v

- 8.1 Introduction

P

: Using only the definition of y, we can prove some rather simple theorems about a class of
general linear feedback loops called Linear Fractional Transformations. To introduce 7
: these, consider a complex matrix M partitioned as s
M -
{ Mo M .
y M=| MY Mo 8.1 b
K My M; (8.1) f,i o
and suppose there is a defined block structure A which is compatible in size with Mj;. -
. v
:' For A € A, consider the following loop equations, of b

‘ LI,
: e = Myw+ Mjyd 9
:: z = Myw+ M,d (8:2) S’) ;

w= Az .
X This set of equations (8.2) is called well posed if for any vector d, there exist unique .
" vectors w, z, and e satisfying the loop equations. It is easy to see that the set of equations g .:
U U
; is well posed if and only if the inverse of I — M1 A exists. If not, then depending on d » .
and M, there is either no solution to the loop equations, or there are an infinite number [
: , : : : = 3
X of solutions. When the inverse does indeed exist, we have ¢ = F, (M,A)d where \J
] A7) "
X Fy, (M,A) = May + My A(I — My A)™' My, (8.3) P o
]

) f
f' F, (M, A) is called a Linear Fractional Transformation on M by A, and in a feedback . !
, diagram appears as: 0
§ =~ 8
' A 3
: %Y
! d M e :- L,
i —— » o ::
I (]
. Figure 8.1 Linear Fractional Transformation oy ;
¢ 9

From a system point of view, we interpret vector d as the “disturbance”, and e is the -
_ “error”, whereas vectors z and w are internal variables. Mj; is the nominal map between ) &
X the disturbance and error, and A represents unknown quantities, called perturbations, g} 2
. . s
! which affect the map in a known way-namely through My, My, My,, and the formula F,,.
[ ‘ot
The subscript u on F), pertains to the “upper” loop of M is closed by A. An analogous - .
: formula describes F; (M, A), which is the resulting matrix obtained by closing the “lower” \
! . . . . . g . Y
; loop of M (assuming the dimensions are ok and the implied inverse exists). g y

:
: 3 A

"‘I » l.s q\‘- " ."I s .Q. ul.ln ‘- .0 ) l ‘q .Q_l ,.'. l‘l “'.!‘vo ‘ *F '. 0‘- () -‘I'. I\.. l‘-l \. o . -l‘q ' "‘ 'J. "' () .’ \ .-J‘ o ‘ N N .\"-b\ ¥
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The constant matrix problem that we would like to solve is:

o determine whether the LFT is well posed for all A in some prescribed subset 2 C A
and,

e if so, then determine how “large” F, (M, A) can get for A in .

The next section has three simple theorems which answer this problem.

8.2 Well Posedness and Performance for Constant LFT’s

One appealing use of u is to determine the well posedness of a linear fractional transforma-
tion on a structured A, and to determine how “big” the linear fractional transformation
can get. As we will see, u answers these questions. Of course, using the results here will

require that we can compute pu.

Consider a complex matrix M partitioned as

My My, ]

M=
[le Mz,

(8.4)

and suppose there are two defined block structures A; and A; which are compatible in
size with My; and My, respectively. Define a third structure A as

A={|2 0 |.aAcA,0eaA, (8.5)
0 A,

Now we have three structures with which we may compute y with respect to. The notation

we will use to keep track of this is as follows: p, (-) is with respect to A, u, () is with
respect to Aj, : p12(-) is with respect to A. In view of this, (M11), pa2 (M) and
p1.2 (M) all make sense, though for instance, y; (M) does not.

The first theorem addresses the well posedness of the LFT F, (M, A,), and is nothing
more than a restatement of the definition of u.

Theorem 8.1 Let 3 > 0. The LFT is well posed for all A, € }BA if and only if
m (My) < B.

Note that the < and < signs can be exchanged and the theorem is still true. An imprecise
but important notion to get from this is that the minimum amount of structured feedback

necessary to cause a loop to be ill posed is inversely proportional to pu of the open loop.
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As the “perturbation” A, deviates from zero, the matrix relating d to e deviates from M.
Using the quantity u, 2 (M), we can bookkeep what happens to p; (F, (M, 4A;)) as follows:

Theorem 8.2 (Robust Performance:constant) Let 8 > 0. Then u; (M) < B if and
only if[ll (Mn) < B, and for all A, € BA,, M2 (Fu (Arl, Al)) < B.

Proof:

— Let A; € A; be given, with 5(A;) < }—,, and define A = diag [A;,A;]. Obviously
A€ A. Now

(8.6)

_ _ I - MllAl —M12A2
det (I — MA) = det [ Y BT

By hypothesis I — M;14,; is invertible, hence det (I — M A) becomes
det (1 — My Ay) det (I — MppBy — My Ay (I = MyuAy) ™ MpA,)

Collecting the A, terms leaves

det (I — MA) = det (I — My, Ay)det (I — F, (M, Ay)Ay)

We also have u, (F, (M, A,)) < B, so,since 7 (A,) < %, the quantity I — F,, (M, 4A)A,

must be nonsingular. Therefore I — MA is nonsingular, so g2 (M) < 8.

— Basically, you just reverse the argument above, but we include this for complete-
ness. Again let A; € A; and A; € A, be given, with & (A;) < %, and define
A = diag [A, Az]. By hypothesis, we know that I — M A is nonsingular. It is easy
to verify from the definition of x4 that (always)

p12 (M) 2> max {p; (My1) , p2 (M22)}

so we also have pu, (My;) < B, which gives that ] — M;14, is nonsingular too.
Therefore

det (I — My, Ar) det (I — F, (M, Ay)A;) = det (I — MA) #£ 0

Obviously, I — F,(M,A,)A; is nonsingular.}
An identical proof switches the < and < signs:

Theorem 8.3 Let 3 > 0. Then u,2(M) < 3 if and only if uy (My;) < 3, and for all
Ay € Ay, with 5(4) < % p2 (Fu (M, Ay)) < 5.
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:

' g

Roughly speaking, we have a test that determines if for all 5(4,) < %, the quantity o

! p2 (Fy (M, A,)) stays bounded by 8. Since both p(-) and &(-) are special cases of y, ;

by the appropriate choice of the set A,, either p (F, (M, A,)) or & (F, (M, A;)) could be .:::

, “watched”. Of course for different choices of A,, the theorem gives information about d:‘!r'

, ¢

@ B2 (Fu (M’Al)) ‘,

Note that in this test, the bound we get on the performance is dependent on the bound we '|~

5 set on the perturbation, namely they are reciprocals. For other values, we must scale M ::‘ :

o and recompute. Specifically, for a > 0, define M, as i‘ ]

‘-‘

® My My ;:‘
] M, = [ oMy @My ] (8.7) '

&g Some simple facts about M,: :ﬁ:

) '.

£ o If a =0 then pup (M) = sy (Myr) o

A

.SE.: e For any A, € A, F,(M,,4,) = aF,(M,A,) (as long as the inverse exists) ‘::‘_
X L
s o

o max {u; (M) , aps (M)} < 12 (My) < max {1,a} 12 (M) S:

g e u12(M,) is a continuous, nondecreasing function of a g"
*

O] z*(

::',: Let ¥ > p1 (M11) be given, and define e

. f.;-‘f‘
ay = max {a: p2(Ma) = 7} (8.8) ',

? 2

- These lead to the following variant of Theorems 8.2 and 8.3; S;.

% s

b5 b

- Theorem 8.4 (Worst Case:constant) Let v > u; (M1,) be given, and a., be computed L
,;.\( S

< from (8.8). Then . P

sup Ha2 (Fu (M, Al)) = — (89) ::'\

;;_ AlG%BAl Oy "::
;:_‘ RS
. Remark: The basic idea of the theorem is this: find the largest a such that for all o

f;; A € ;—,BA, we still get uo (F, (M,A;)) < g— By the 2nd fact above, this is the :‘,

same as: find the largest a such that for all 7 (4A,) < 713-, p2(My) < B. This test :'

':" we can do, by applying Theorem 8.2 on M,, which then gives the result. ; ‘
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Proof: Since v > y, (My;), the left hand side of (8.9) is always well defined. By definition
of a.,, we know that u; ; (Ma,) =+, and for any € > 0, y; 2 (Ma.,+¢) > 4. Applying
Theorem 8.3 with B = v gives

if Al € A],&(AI) < :1)‘- s then M2 (Fu (M,Al)) S al'

o

Since F, (M, A,) is well defined and continuous on {A1 10 (A) < %}, we have

sup “2 (Fu (M?Al)) S l
A]G%BA] a‘Y

Suppose it is truly less. Then for some ¢ > 0

Y
sup  pz (Fu (M, ) =
A;G-‘;BAl 2 ( ! a‘Y +€

which implies that p, (Maﬁﬂ) <7, a contradiction of the definition of a,.

Corollary 8.5 If uy2 (M,) is a increasing function of a (not just nondecreasing) then

M,
sup (P (M, Ay)) = £12 M),

5’(A1)SRL‘4—°5

Finally, we state a maximum modulus like result for u. The proof uses Theorem 4.5 from
the previous section, along with ideas similar to the ones here.

Theorem 8.6 (Maximum modulus: LFT) Let M be given as in (8.4), along with two
block structures A; and A;. Suppose that y; (My,) < 1. Then

gmax 2 (Fu (M, 8y)) = max pz (Fu (M, Q1)) (8.10)

Remark: In light of this, any u test with at least one repeated scalar block can always be
reduced to a one dimensional search of y tests without that block. A similar result
to Theorem 8.6 is in [BoyD]. They show for that any H bounded and analytic on
[z] £ 1, the function k(z) := u (H(z)) is subharmonic.

Finally, we note that Theorems 8.1 through 8.4, along with corollary 8.5 and Theorem 8.6
have obvious analogs dealing with the behavior of F; (M, A), under structured perturba-
tions. In this section, all of the results were stated and proven for F, (M, A). Throughout

this thesis, we will use the result of either type without special mention.

A

P A R " SR S < m e mp e e A p AR R S S B T
l..... "\*'.’-" )F“ ’ l" .‘ '“’-f{ ' v J‘ v ¢ i .‘- .' v -‘ r f,-'f { '. (M . W

wa

X

!

k<

e



VB Xy O

2

X

xR B S

B & N

B PR

=

=5

-

»

n
OSTAONIOU

o 4% 1YY,

8.3 Examples of LFT’s

8.3.1 Transfer functions as LFT’s

Consider a stable, discrete time, linear system

Try1 = Az + Bug

yre = Czr+ Duy (8.11)

with transfer function G(z) = D+C (2 — A)™' B (n states, and for simplicity, we assume
that this has m inputs and outputs, though everything that follows holds for nonsquare
plants also). The infinity norm of G is defined as

[Glleo = sup & (G(=))
RE

which is equivalent to
IGlleo = sup & (D + 6C(I — 64)™ B) (8.12)
i
Define Ay = {6I,: 6 € C}, Az = C™*™ and

A B

M:=[CD

] g R{n+m)x(ntm) (8.13)
In y notation, we can write (8.12) as
IGllo = sup p2(Fu(M,4)) (8.14)
A1eBA,

because the block structure A, implies that u;(-) = (), and A; has been defined to
represent the Z-transform variable. Applying theorem 8.2, with 8 = 1, gives

IGllo <1 iff ma(M)<1. (8.15)

In view of the result in section 7.2, actually ||G|lc < 1 if and only if there exists a
coordinate transformation 7' € C**" such that
) <1

5 ([ TAT-' TB
CT™' D
Hence, we have an algorithm for generating all stable rational transfer functions that have
| - loo < 1. Simply choose any matrix M so that (M) < 1 and partition M as shown
above. Then G will be stable, and have norm less than one, and all stable rational G(z),
with ||G|lc < 1 can be generated in this fashion.
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This result can also be shown using results from dissipative systems, and linear quadratic
optimal control theory (with nondefinite cost functions). In fact, if [|G||cc < 1, then solving
one Riccati equation yields a T € C**" such that

(| TAT' TB |\ _ 1

\| et p|)T"
The details of this calculation are interesting, and follow straightforwardly from the results
in [Wil]. We do not include them here because the Riccati solution has the undesirable
property that n of the singular values will be coalesced at & = 1. This seems to limit

the usefulness of the Riccati solution as a viable computational alternative to gradient
searching along the “full” D directions.

In this example, the “perturbation” is the repeated scalar block, and for the ||+ ||, norm, it
must correspond to the unit disk. Using theorem 8.2 with 3 equal to 1, we can only check
if | Gj|co is less than 1. For other values, we must scale G and recompute, using Theorem

8.4. Namely, define & as

_ . . (I TAT' TB
@ = max {a:uqx‘fa([ oCT-' oD D:l} (8.16)

Then the worst case theorem, Theorem 8.4 (with v = 1) gives

IGlleo = (8.17)

Q-

8.3.2 Keeping LFT’s large

Just as p can be used to determine how big the maximum singular value (or spectral
radius) of an LFT can get, we can also use it to determine if the minimum singular value
will remain bounded away from 0 (and, of course, the minimum eigenvalue too). Of course,
the motivation of the LFT as a “perturbed disturbance to error” is no longer applicable,
but this problem is interesting in its own right. The key to all this is that the inverse of
an LFT, F; (M, A) , is itself an LFT, on the same A, but with a different known matrix,
M;.

This section will present these types of results. All are obtained from the well known
“matrix inversion lemma”, which we review for completeness. We begin with a lemma
that is fundamental to the matrix inversion lemma.

Lemma 8.7 Let A, B,C, and D be complex matrices, A € C***,B € C"*™ C €
cmxm D € C™**. Suppose that A and C are each invertible. Then A + BCD is
invertible if and only if C~' + DA~'B is invertible.
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- Proof: Taking determinants, we get \Jﬂb
det(A+ BCD) = detA det(I + A"1BCD) ‘_‘,
ol = detAdet(I+ DA™'BC) Loy
, = detAdet(C~'+ DA™'B) detC.} e
:? f A
In order to evaluate how small things actually get, we need the matrix inversion lemma. ° A
M
: N
Lemma 8.8 Suppose A, B,C, and D are given as in lemma 5.6. If A,C, and A+ BCD Q ::f.
E are invertible, then ‘{ §
LY

(A+BCD) =A™ —~A'B(C™ + DA™ B)” DA™

Proof: By lemma 8.7, C~! + DA™ B is invertible - the result follows by verification. f

Now, let M be given, partitioned in a 2 x 2 fashion as in (8.4), and let A, be a given o

t% structure, compatible with M,,. Suppose M, is square, hence F; (M, A) is square too. "n,,
Under what conditions is F; (M, A;) invertible for all A; € A,, with &(A) < %? E".::

AN

First, we require that it be well defined for all such A,, so we need p; (My2) < 8. This 7:

guarantees that I + Mz;A,; will be invertible. Second, it is obvious that M;; needs to be " »

invertible, otherwise the LFT is not invertible even for A, = 0.

& Theorem 8.9 Let M be given, with the following assumptions: My, is square and invert-
ible, and py (Ma;) < B. Then for all A, € -;;BAg the LFT F; (M, A,) is invertible if and
i

only if p, (Mzz - MuMﬁlMu) < B

Proof: Since M,; is invertible, and pz(Mag) < 8, and & (A;) < %, we can apply Lemma
8.7 to determine the invertibility of

My 4 MDAy (I — MypAg) ™ My, .
N N \ —— —
A B C D

This is invertible if and only if

I — MyA; + My M My, A, (8.18)

is invertible. Recall the definition of . The quantity in (8.18) is invertible for all
Az € A, with 5 (A;) < 5 if and only if py (May — Moy M Miz) < B4

oy i 305 AR I A AT R A AT S TA N AT e - T T A Tt T A A T A A AT T
RS AGHEAOMN Y0 .ln'.‘c‘.'.'l M AN TN C -- \ > u‘ A AP " O S s >~ q, WP Ao AN
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Now apply the matrix inversion lemma to get an expression for [F} (M, A,)]™". If F; (M, A,)

is invertible, then

52e|

- - _ -1 _
[F (M, 85)] = M! — M Mg [T = (M — My M3 M) Ag) ™ Moy M3

If we define a matrix M; as

)

M M3 —M; My, }

= My M Myy— My M My,

(o

[Fi (M, A2)]™! = Fi (M1, A)

Theorem 8.10 Suppose that My, is invertible, pz (Mo — My My  Myz) < B, and ps (Maz) <
B. Then, in view of the discussion, the following equivalences make sense and are true:

oA &8

1
- 5 A
57 s, (AO0A) <5

o puz (M) <p

N é’:,“ékf[ﬂ (M, Ar)] >

where A := {diag [A,A;] : A € C™™ A, € A;}. (If we had wanted to keep track of the
smallest magnitude eigenvalue, as opposed to the smallest singular value, then the top
block of A would instead be a repeated scalar block) §

¥

8.4 Upper bound LFT results

*le

s 4

Each of the Theorems 8.2 and 8.3 give necessary and sufficient conditions for some per-

Er ety

formance/robustness characteristic in terms of a u evaluation. Looking back at these
theorems, we see that the p test always looks like “Is u (M) < 87" (or <). Hence, upper

2457,

and lower bounds can be used in the following manner:

¥

x &)

e an upper bound gives a sufficient condition for the robustness/performance charac-

.(

teristic of the theorem
¢ a lower bound gives a sufficient condition when the robustness/performance will not

be met

Consequently, both are important. The upper bound will yield positive comments like
“We are okay for perturbations up to this size, and maybe alot better”, while the lower

1
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bound yields negative statements such as “There is a perturbation this size that will cause

instability (or sufficient degradation in performance), and it might be worse”.

The above comments apply for any upper and lower bound. In this section, we will
concentrate on the additional information that is obtained in using the & (DM D) upper
bound. In other words, because of its structure, & (DM D~!) < f in general implies a
great deal more than g (M) < 8. One word before proceeding: we drdp the exponential
notation for D’s, and revert back to (3.7) for the notation. Recall that the exponential
parametrization was introduced in section 5 to allow simpler derivative formulas, which
are implicit in the definition of V.

We begin with an obvious result: Trivial upper bound lemma: Let A, and A, be
two given structures, and define a third, A = {diag[A;, Ay} : A; € A;}. Let M be a given
matrix such that pu;,(M) makes sense, and suppose there is a function p,, (-) that is a
upper bound for py 5 (-). If uys (M) < B, then

F, (M, Ay))
A,g%aﬁ‘m”d ( 1)) < B8

Proof: This follows directly from the constant matrix robust performance theorem,
Theorem 8.2.}

The following theorem shows what additional information we get if the upper bound,
Bub (+), is in fact the @ (DM D) upper bound. As before, let A; and A, be two given
structures, and let A = {diag[A;, Az] : A; € A;}. Similarly, let D; be the appropriate D
scaling sets for the two structures, and denote D as the obvious diagonal augmentation of
these two sets.

Lemma 8.11 (Constant D lemma) Let M be given as in the robust performance
theorem, 8.2. Suppose there is a D € D such that

5(DMD™) <8
Then there exists a Dy € Dy such that

- -1
o5, 7 (D2Fu (M, A1)D7") < 8

Remarks: Initially, one might guess that if we replace p by the (DM D~!) upper bound

in the robust performance theorem hypothesis, the resulting claim would just have pu re-
placed by @ (DM D-!). This lemma shows that we get quite abit more: If the 3 (DM D)
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upper bound is less than 3, this does not just imply that for all A; € A, with 7(A,) < %,
the upper bound of F, (M, A,) is less than 3. It implies, instead, that this is indeed so,

5 but using only a single D, € D,. O "
:i 2
Proof: The easiest method of proof is just to track the norms of the various vectors in ! .:
~ ~ ]
the loop equations for the LFT. Let D, and D; be the separate parts of the D € D
’ that achieves & (ﬁMﬁ'l) < B. Obviously, u; (My;) < 3, so for any A; € A; with g

-

R g(A&) < %, the two LFT’s below are well posed, and from d to e are the same.

(23

A, A, |-

E * D' —* D, )

N
t d M [ 4 d M e ?3 <
) —"Dz'l—q DZ‘__. — > Dz-l D2 .
; % E
; LFT, LFT, &4
. , Figure 8.2 Diagram for Proof of Lemma 8.11 o
a Let d # 0 be any given complex vector of appropriate dimension, and let e, w, and z g
y be the unique solutions to the loop equations for LFT;. By hypothesis, we have -’(‘.a "
¢ "

i,
: =1 + lell* < 82 (lhwll® + [14]1%) (8.19) ;
, and since & (A1) < § o J
! 1 .
1 2 < — 2 A
: ol < el (8:20) . 3
1' Combining these gives that L4

lell* < 8%)d]|>. (8.21)

Equation (8.21) also holds for LFT;, since the map from d to e is the same for both
LFTs. This implies that & (DgF,, (M, AQD{I) < [ as desired.

" W

=50 5%)

An interesting question is “what is the optimal constant scaling that one can apply?” In v
]
: particular, suppose u; (M;,) < 1. Therefore, for all A; € A, with (A,) < 1, the linear ‘:5 b
4 fractional transformation F, (M, A,) is defined. Can we compute the value of '
! ;\'v 4
. _ -1 . !
, oith, o1285, 7 (PoF (M, A0DEY) (822 -
X and also find a D, that achieves it? Towards answering this question, we have a simple h
[
' lemma: N

-
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Lemma 8.12 Let M, A,, A,;, D,, and D, be given as usual. Suppose that the A,

structure has dimension nz X n,. Define an augmented structure A as
A := {diag[A1,A] : Ay € Ay, A € CM¥me} (8.23)

Note that A is not A, augmented with A,. It is A, augmented with an unstructured
block the same size as A,. Suppose that p, (M1;) < 1. Then for a > 0, and D; € D,,

) My, My, D7?
Ha ( aDzMgl aDzMzzDz_l <l (824)

if and only if

1
— -1 =
e & (D.F. (M, A)D7) < ~. (8.25)

Proof: Again, this follows directly from the definition of the structure A, and the robust
performance theorem, Theorem 8.2.}

This allows easy proof of the General optimal constant scaling theorem:

Theorem 8.13 Let M, A,, A;, Dy, D, and A be given as in Lemma 8.12. Suppose
that u1 (My1) < 1. Define v by

_ L. X Mn M12D;1
L {a | D;Ié%z #4 ( aDyMy aDyMpu D5t ) < ! (8.26)

Then

inf max & (D,F, (M,A)D;") =

D2€D2 A1€BA,; (8'27)

1
v

Proof: Note that since p1 (M11) < 1, the value of v (in (8.26)) is positive. Next, let 7
denote the infimum, that is

— i = -1
ri= inf AFE%XAIU(DQF“ (M, Ay)D;") (8.28)
1

We want to show that r = —.
Y

Let a < 4. Then, from the definition of 4, there is a D, € D, such that

) My, My, D;!
Ha ( 0D2M21 aDgMnD{l <l (829)
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u:? .'
Then Lemma 8.12 implies A
_ — 1 =

- -1 A
Lmax & (D,F. (M, A)D7Y) < = (8.30) J A
1 4 3

N
so trivially 7 < p This holds for any & < 4, in particular for small enough ¢ > 0 0o
1 A

and a := 4 — €. Therefore, for ¢ >0, 7 < —-}—, and taking limits gives 7 < ;

1 _ R
Suppose it is truly less, ie. 7 < -‘; Then by the definition of 7, (8.28), there is a 4
4

P

Dz € D, such that

" o 1
5 (D, F, (M,A)D;') < —. 8.31
21285, % (DR (M A)D77) < 2 (831 o
Then Lemma 8.12 and equation (8.31) imply that N
“
My My, D;? e G
A a1 <1 8.32 oo
o ( vD2 My 7D2M22D21 ( ) O
Using continuity, for small enough § > 0, we would then have @ .i
o
M, My, D! ) K]
KA " v v 1 1 <1 8.33 0
a < (5 + ‘7) Dy My (5 + ‘)‘) D2M22D2 1 ( ) ")
which violates the definition of 4. Hence 7 =  as claimed.} R
% !
L , : ]
This is an interesting result. Note that the structure which we need to compute x4 with i R
respect to does not depend on A;. If 4 can be computed, then, modulo the necessary "
search over the D; and o this is a useful theorem. Later, in section 10, we will use the 3 )
general optimal constant scaling theorem to optimally scale transfer functions using g ]
constant, block structured scalings. This, along with the small gain theorem, will provide ;j .:'.
a method of analyzing linear, time invariant, multivariable systems with structured, time .
varying and/or cone bounded nonlinear perturbations. S }
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9 A Class of Uncertain Difference Equations

9.1 Robust stability

In this section, we present some robustness results for a class of uncertain systems. The pre-
sentation centers around discrete time systems, as the explanation seems simpler, though
everything done here has a continuous time analog. The required transformation for con-
tinuous time systems is discussed in the appendix.

Suppose M € C{r+m)x(n+m) ig given, partitioned as

My M, ]
My Mj

where M;; € C*** My, € C*™*™ My € C™*", and My € C™*™, Let A beamxm
block structure, with corresponding D scaling set denoted by D. Suppose pa (M) < 1.
Then for every A € BA, the linear fractional transformation F;(M,A) is a well defined
element of C™*". Let z; € C" evolve via the (possibly time varying) linear difference

M= [ (9.1)

equation

Tk4l = Fl (M, Ak)zk ’ (92)

where for each time step k, Ay € BA. Such a system would arise if a parametrically
uncertain plant, as described in section 2, had a feedback controller, that stabilized the
nominal system, and we were interested in the stability of the closed loop for all the
possible perturbed plants.

Consider the following three assumptions on the uncertainty A;. For each k:

(a.1) Are A

(a.2) 7(Ax) <1

(a.3) Ay is fixed - ie. it does not vary with k

We want to guarantee the stability of the system described in (9.2), knowing only these
three assumptions.

Since (a.3) implies that the system is time invariant, the stability of the uncertain system
amounts to nothing more than checking the magnitude of the eigenvalues of F; (M, A) for
each A € BA and is equivalent to

Jmax p(Fi(M,8)) <1
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Recall, from section 3.1, that p(:), the spectral radius, is a special case of u. Hence this

question can be answered using Theorem 8.2, on M with an augmented structure. The

augmentation is straightforward. Define
A = {diag[é],,A] : 6 € C,A € A} (9.3)

For the upper bound, which we will use later, the corresponding D scaling set will be

denoted D and is of course

D = {diag[D1, D;] : D1 € C™*" is invertible, D, € D} (9.4)

Theorem 9.1 The uncertain difference equation z,4y = F;(M,A)z, is exponentially
stable for each fixed A € BA if and only if

HA (M) <1, (9.5)

where A is defined in (9.3).
Proos: Follows by direct application of Theorem 8.2.

Remember, this is true for constant, but unknown A. If assumption (a.3) above is dis-
carded, then the system is time varying. At each step, the uncertain element may be
different-we only know that at each step k, it lies in the norm bounded, structured set
BA. Obviously, simple spectral radius arguments do not apply. The next lemma gives a
simple sufficient condition for stability.

Lemma 9.2 If
Argngé(F} (M, A)) =:8<1 (9.6)

then the uncertain, time varying difference equation (9.2) is exponentially stable, as long
as Ay satisfies assumptions (a.1) and (a.2) for each time step k.

Proof: Regardless of the time variation of the perturbation, A;, we get that the norm of

T, satisfies
lzell < B*llzol| (9.7)

which obviously decays to zero exponentially since 8 < 1 by assumption. §

As stated, Lemma 9.2 is quite conservative. We can reduce the conservatism by allowing

one state space coordinate change. The proof is simple, and is omitted.
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Lemma 9.3 If there exists an invertible T € C**" such that
— -1\ _
joax (TR(M,A)T")=p<1 (9.8)
then for each k the state zi, of (9.2) is bounded by
lzxll < & (T) B*loll (9.9)

where x(T') denotes the condition number of T.

Remark: The above reasoning is equivalent to finding a single, quadratic Lyapunov func-
tion for the entire set of “A” matrices

{F,(M,A): A € BA}.

This equivalence is evident via this lemma.

R R YR D S R PR

Lemma 9.4 Let A € C**" be given. There exists a Lyapunov matrix P € C"*",
P = P*, P >0 for z41 = Azx If and only if there exists an invertible T € C"*"
such that 3 (TAT™!) < 1.

&

Proof: P is a Lyapunov matrix if and only if A*PA — P < 0. This is equivalent
to P~A"PAP~% — I <0, which is the same as 5 (P¥AP~#) < 1. {

Consequently, if T' is a coordinate transformation that solves (9.8), then P := T*T is

Dunr B g

a single Lyapunov matrix that works. Conversely, if P is a correct Lyapunov matrix,

then P% is a single coordinate transformation which solves (9.8).

>

Conceptually, the existence of a matrix T satisfying condition (9.8) can be cast as a u test.

Again we must augment the A perturbation structure, but this time with a full block,

==

since we are checking & (-), and we must lug around the coordinate change T. The new
structure A is

A=

A = {diag[A1, Ag): Ay €C™", Ay € A} (9.10)

Now, using the Theorem 8.2, we obviously have

ar e

Theorem 9.5 There exists an invertible T € C™**™ such that

L
J
max & (TF (M,A)T™") < 1 (9.11)
t}» _AGA
h #(8)<1
]

if and only if

. T 0 ' 0
Tel(l':l'f:xn;lA [( 0 I, )M( 0o I, ) <l (9.12)
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If we could calculate pj; exactly, the condition (9.12) would in principle be something that
could be checked, although it is unclear how the search over the T’s would be done. An
interesting approach we will pursue here is to substitute the & (DM D~!) upper bound for
p4 (-) and see what the resulting sufficient condition is.

First we need the correct set D for the structure A. If D is the appropriate set of D
scalings for A, then we define D = {diag[di],, Dz} : dy # 0, D, € D}. Substituting the
upper bound in place of u; gives that there is a transformation T such that (9.11) is met

if
. (&L, o]1[T o T-1 0 1[d{', o0
f%fﬂ([ 0 Dz}[ﬂ I,,.]M[ 0 Im][ 0 Dt <1 (9.13)
bep

The scalar d; is irrelevent, since it introduces no freedom that the coordinate change T
didn't already provide. Absorbing d; into T', we rewrite (9.13) as

-1
inf a([g 122 ] M[TO s D <1 (9.14)
D2€D 2

Note the effect the transformation T has on the minimization in (9.14). Since T is free
to be any invertible matrix in C**", the matrix diag [T, D,] is some arbitrary element of
D. Hence although (9.14) is condition (9.11) with uj replaced by its upper bound, the
freedom in choosing the coordinate transformation “alters” the upper bound, so that the
left hand side of (9.14) is just the & (DM D) upper bound for the A structure (not the
A structure that was originally there in (9.11)). In other words, (9.14) is just

inf 6 (DMD™) < 1, 9.15
jat,o (DMD™) ©:19)

and this is a sufficient condition for Theorem 9.5 to hold. We write this as a theorem.

Theorem 9.6 If there exists a D € D such that & (DMD‘I) = (3 < 1, then the uncertain,
time varying, linear system

T = F1 (M, Ap)ze , Ar € BA (9.16)

is exponentially stable.
How do all these different conditions fit together?

9.a Theorem 9.1 showed that uz (M) < 1 is both necessary and sufficient for robust
stability of (9.2) with constant, but unknown structured perturbations.
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9.b Next, Theorem 9.5 gave a necessary and sufficient condition for the existence of a

single, quadratic Lyapunov function for the entire set of systems.

9.c Unfortunately, the condition in Theorem 9.5 is not really a verifiable condition, so
we substituted a u test with a (DMD™!) upper bound test. This gives that
inf & (ﬁM D‘l) < 1 is a sufficient condition for robust stability with unknown,

DeD
time varying, structured perturbations.

Note the similarity between the test in Theorem 9.1, and the test in Theorem 9.6. Both
are associated with the A structure — one involves y and one involves the & (DM b"l)
upper bound. Yet the conclusions each give are quite different. This sheds a little light on
how fundamentally different the upper bound and y are.

This final result described in Theorem 9.6 can also be derived from a different point of

view, utilizing Lemma 8.11 from section 8.4 along with the small gain theorem.

Note that the perturbed system, (9.2), is just the loop shown below.

M

2

Xisl X

Mn ey v_' le
Mu

A

Figure 9.1 Perturbed System, Equation (9.2)

Define the transfer function G (z) = My + My, (21 — JVIH)—1 M,,. If we can find a D, and
D, (in the appropriate scaling sets, diag [D;, D5} € D) such that

_ /= A1\ _ = DlMuDl-l DIMIZDZ’_I
4 (DMD ) - U( D2M21D1—1 [)2-1‘42202_1 <1

then using the Constant D lemma, 8.11, we get

1D2G(2) Dy loo < 1. (9.17)

Now for A, € A, the two loops below are equivalent, even if A, varies with &k, because D,
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is constant, and hence it commutes with linear time varying operators as well.

A, |+ A,

-1

Dz "G 'Dz 'G

Figure 9.2 Equivalent Loops

Therefore, a trivial application of the small gain theorem along with equation (9.17) gives
that the perturbed loop is stable for all varying & (Ai) < 1, as expected, and in agreement
with Theorem 9.6 and 9.c above.

9.2 Robust performance

We have seen how the upper bound plays a role in determining some robustness prop-
erties of a class of uncertain difference equations when the perturbations are structured,
and time varying. In this section, we continue exploring the difference between u and the
upper bound with the added objective of performance. Performance will be character-
ized in terms of the zero initial state l; gain from disturbance to error. Recall that for
time-invariant systems, this is the same as the || - ||, norm of the transfer function from
disturbance to error.

We begin with a matrix M € C(ntnetm)x(ntnatm)  partitioned obviously, and relating the

variables via

Tr41 My, My, M3 7
ex | =1 My M2 My dy (9.18)
2k My Ma;, Mss wi

The uncertainty is “feedback” from z to w through a structured A € A, where A is
a prescribed m x m block structure. Consider a uncertain linear system (possibly time
varying) driven by a disturbance input dj, with output error e.

Ck

[ Tkt ] = F (M, Ay) [ Z: } (9.19)
With respect to this partition, F; (M, A;) is

Mll M12 M]3 -1
[ M21 A/Ig'z ] + [ M,23 ] Ak (I— A/I33Ak) [ M31 M32 ]

We need two augmented block structures. Define A and A as

A = {diag[b1],, Ag) : 6, € C. A, € Cexne} (9.20)
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A:={diag[A,A]:AeA,Ae A} (9.21) R
Suppose that us (Mi3) < 1. o
! Theorem 9.7 (Robust Performance) For all A € BA, the uncertain system (9.19) is o

stable and for zero initial state response, the error e satisfies |lel|, < ||d||» if and only if
| ]
HA (M) <1. RS,

T
»

-

Proof:

wx}:
L]

«— Let A € BA be given. Since pz (M) < 1, Theorem 8.2 gives ®
: ua (Fi(M,4)) < 1. (9.22) ]

' Stability is apparent, and the I, performance follows from the example in section ~
8.3.1. %

! — Essentially, the steps are reversed. g::c.f
)

What can be concluded if the upper bound of u; (M) is less than 17 °®

‘.ﬁ
K Theorem 9.8 Let M be given as in (9.18), along with a block structure A. If there is a 'j.‘:
D € D such that '-‘,"l_t

5 (DMD™) =g <1 "o

0

4 then for all sequences {Ax}o, with Ay € BA, the time varying, uncertain system

K [ x::l ] = F (M, A) [ ;: } (9.23) v .g

is zero-input, exponentially stable, and if zo = 0, and {dx} € I3, then le|| < 8 ||d||2.

Sy
:’ [ §

Y The results we have obtained for time varying perturbations extend to a special class of

Rah ]
P
e/ 00 ¢

nonlinear perturbations. The appropriate definitions and assumptions are the subject of

4
|

S
'

3 the next section.
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9.3 Cone bounded nonlinearities

Zde

Let N be the set of nonnegative integers, and let O be any set.
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Definition 9.9 A unstructured, memoryless, nonlinear operator, S: N x O x C"¢ — Cne,
is cone bounded (of size ) if there exists a a > 0 such that for all d € C*¢, 0 € O, and
allke N

IS (k,0,d) || < al|d||.

In the definition, the set O can represent dependencies of nonlinearity S on other param-
eters.

Unfortunately, the notion of a n x n repeated scalar, cone bounded operator is trickier. The
natural definition would involve a single scalar cone bounded nonlinearity, which we would
then be applied separately to each of the n components of the input vector. Unfortunately,
our framework cannot directly handle this, and we must treat this type of uncertainty as n
independent, cone bounded scalar nonlinearities. So, when we refer to a cone bounded,
repeated scalar block, we in fact mean a block of the form v (k,0) I,. Note that 4 can be
time varying, and depend on the other parameters which the set O represents. The key is

that all n signals into this block get multiplied by the same scalar parameter, namely ~.

Finally, a block structured, cone bounded nonlinearity is the obvious block diagonal col-
lection of several of these blocks. With this definition, results similar to the time varying
(but linear) results are possible.

Theorem 9.10 Let M be given as in (9.18), along with a block structure A. Suppose
A:N x O x C" — C™4 js a block structured, cone bounded nonlinearity, with cone of size
1. If there is a D € D such that & (DMD"‘) = f < 1, then the uncertain system

Tkl My, M, M Tk
ex | =| Ma My My de
2k M31 M32 M33 Wi

wi = A (k, 0k, 2k)

is zero-input, exponentially stable, and if zo = 0, and {di};o, € I, then |le]lz < 8 ||d|,-

- AT T R R AT LN LT v AT NP N R IS SR N KRy B e " i W W W™ Wy ¥ LR, ] . ™
‘Q':'l'.‘l.. I‘-'I nl‘- '.I 'L l\. f.vf‘,{f ol ¥ f. o ! ".ﬁ B .‘h AR '. » q- \.' N \‘P' N ’l.l. \

(R AN ) (Ralalalll

Ve

B g5y GA

‘

PabdiP I RN LN

o

-': P e " -» &‘1',’:.? 1‘1

Chacty

N S®
B



Bl ot fad AV ta¥ da® fav datana oy

Optimal Constant D scalings for Multivariable

Systems

This section combines two results from previous sections, to yield a method for sub-optimal

and optimal scaling of multivariable transfer functions using constant, diagonal D matrices.

Let G(z) be a given, stable, transfer function, with m inputs, and m outputs, and state
space realization

G(z)=D+C(2I-A)'B (10.1)
Suppose a perturbation structure A; is given, and is compatible with G(z). That is,
A; C C™*xm_ As usual, let D; denote the set of diagonal scalings (here, for simplicity, we
revert back to the nonexponential notation for the D’s, ie., the set D, from section (5.1))

that commute with all elements of A,.

Optimal constant scaling is the constant D scale that achieves the following infimum
(if it exists, otherwise, a scaling that gets arbitrarily close)

..
-l &

ANl
DT

-X ¥

: = -1
Dlzréfpz flexcp g (D2G(Z)D2 ) (10.2)
2121

<

¥

P
-
g
-

e

Remark: This is useful because any linear perturbation, even a time varying pertur-
bation, with the appropriate block diagonal structure as defined by A;, commutes
with these constant D scales. Therefore, for every constant D € D and every op-
erator A,, with the correct block diagonal structure, the following operators are the
same

DA,D™!' = A,
Therefore, for any operator G, the following systems are equivalent (any solution
to the loop equations in one system are also solutions to the loop equations of the
other).

—s O—>}

P

AP
2y

¢

P e’

Figure 10.1 Equivalent Loops

-
4

Simple application of the small gain theorem, ([Zam] and [DesV]), on the right figure
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gives that if A, is a stable operator mapping I, — I3, and the induced norm of A,,

[[A2]|, satisfies .

[DGDloo

then the loop is stable. Hence, if we can maximize the right hand side, this will

14z <

eliminate some of the conservatism in the small gain theorem due to the structure

of the perturbation. This calls for a minimization of the form
inf |[DGD™!|oo
DeD

An important point to reiterate is that the D’s are constant. If they were frequency
varying, then in general they would not commute with time varying A’s, and hence
the equivalence of the two figures would be invalid.

Refering back to section 8.4 we see that, at least conceptually, Theorem 8.13 gives the
value of the infimum. Here we will capitalize on the additional structure that is present
in this specific problem, and use the result for block structures with f = s = 1 which we
obtained in section 7.2 to give a computationally tractable approach.

First, let A € C*** B € C**™,C € C™** and D € C™*™ be a realization of G(z). We
assume G is stable, so p(A) < 1. Recall that by inverting the Z transform variable, we
can rewrite (10.2) as

. = -1
pnf max & (D,F, (M, A,)D;?) (10.3)
a(A1)<1
where
M := [é’ g ] (10.4)

and A; = {6I,: 6 € C}.

Direct application of Theorem 8.13 from 8.4 gives,

1
. — -1\ _ 2
D;Ié%z f:g o (D2G(Z)D2 ) =3 (10.5)
=121
where v is defined by
__ . ) A BD;!
7= sup {“ ' pih, Ha ( aD;C aDyDD;! ) < 1} (10.6)
using the block structure
A := {diag[8,1,,A] : 6, € C, A € C™ ™} (10.7)
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This, A in (10.7), is precisely the structure we considered in section 7.2, and with respect
to this structure, uz (M) = I;Iéf‘ﬁ g (DM f)"). Hence the quantity + in (10.6) can be defined
in terms the upper bound, instead of ;. The expression for 4 below follows immediately
by substituting the infimum for g into (10.6).

_ o . _( D\AD{' DyBD;?
7-21;8 {a.D;rész 1glf a’(aDZCDI_I aDyDD;! <1lp. (10.8)

invertible

A,
Ao

We state this as a theorem.

.
o

Theorem 10.1 Let G(z) and A, be given as in the beginning of this section. Define

v€R by
W . _{ DiAD* D,BD;?
N = i\;g {a s i:&t;ﬁbha ( aD,CD' aDyDD;! <1l3p. (10.9)
D,€D;
Then )
. - -1y _
Dlzgf‘l.)g f:cp g (DgG’(z)D2 ) = 7{1 (10.10)

jz[>1

3

How is this computed? For a given o > 0, we can find the infimum using the descent
directions for & that were presented in section 5.3. Carrying out a one dimensional search

-
C

to find the correct value of ¥ completes the calculation.

The sufficient condition is easy, and follows directly from Lemma 8.11.

Lemma 10.2 If there is a diag [D;, D;] € D, and an a > 0 such that

,( DADY  DBDF' ) _,
aD,CD;' aD,DD;!,

then

1 T
I|D2GD2-1||OO S -C-l- LR

A
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11 Frequency domain techniques

The most well known use of u is as a frequency domain tool, specifically, as a generalization
of the singular value tools developed in the late 70’s, [DoyS]. Singular values are useful
for one full block of uncertainty, but are generally conservative when the uncertainty has
structure (recall, for one full block, 4 = &, but for other structures the gap between x and
& may be arbitrarily large). Hence singular value-like frequency plots, using p instead of
& can handle structured unmodeled dynamics, [DoyWS].

This section will present a simple set of modeling assumptions, along with the robust-
ness theorems that subsequently arise. The modeling approach we adopt here is quite
unsophisticated. This will help us avoid more complicated topological issues of modeling
uncertainty, which would take us too far from the spirit of the research. A natural way
to view uncertainty in an individual component is as follows: the only knowledge about
the actual component is that it lies in some predescribed set of possible components (the
use of p almost requires that the prescribed set be defined in terms of a linear fractional
transformation). Work by Vidyasagar and [FooP] has shown that the set representing the
actual component should be path connected in the graph topology. The graph topology is
a topology on the space of proper, rational transfer matrices. It was introduced in [Vid],
and is best characterized in terms of coprime factorizations. We would like to bypass this
issue, since it is not central to the ideas here. Moreover, obtaining necessary conditions
for robust stability is much less understood in this framework. Consequently, we will be
content with the simplified uncertainty modeling presented here. Fortunately, in either
approach, the robustness test (using a p framework) will still involve calculating g on a
specific nominal, closed loop transfer function.

Apart from the differences in time domains (continuous versus discrete), the results of this
section are entirely equivalent to those from section 9. In effect, we replace the single u
test of Theorems 9.1 and 9.7 with a frequency varying u test on a smaller matrix and cor-
respondingly smaller block structure. This is possible via the maximum modulus result,
Theorem 8.6. In spite of this mathematical equivalence, the results in this section are de-
rived using a Nyquist-based argument, which is consistent with the historical development
of these rohnaetneee methods.

We begin with some well known results on the stability of feedback loops.
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11.1 Stability of Feedback Loops

Consider two finite dimensional, linear, time invariant systems described by the equations
z; = Aiz; + Biu;
¥ = Ciz; + Dyw;
Assume that the number of outputs in system 1 equals the number of inputs to system 2,
and vice versa. Hence D, D, is a square matrix, and we assume that I + D, D, is invertible.

Let M;(s) denote the transfer function of each system.

Suppose that for each : = 1,2, the pair (4;, B;) is stabilizable, and the pair (A;, C;) is
detectable. Consider the interconnection u; = y3 + v;; u; = vo — y; shown below.

Y2 M u, o+ Vv,
2 —O

v + u Y
! o~ 1 Ml

Figure 11.1 Feedback Interconnection of Two Systems
Then the internal dynamics of the interconnection, which are governed by the matrix

Ay — By(I+ D;Dy)™' D,C, B, (I + D,D,)™* C, ]
—By(I+ D1Dy)' Gy Ay — B; (I + DyD;)™" D1C,

V2 Y2
the open left half plane (proper, rational, transfer functions with all poles in the open left

are stable if and only if the transfer function from [ v ] to [ n ] has all of its poles in

half plane will be referred to as stable). This is easy to verify by showing that the internal
dynamics are stabilizable from v, and detectable from y.

Theorem 11.1 If both My and M, are stable, then the interconnection is stable if and
only if (I + My(s)My(s))™" is stable.

Proof: All four of the transfer functions are linear combinations of I, M;, M,, and ',\;l
I+ M M;)™", hence, if these separately stable, all 4 of the transfer functions are. ST
1 A2
Conversely, (I + My(s)Ma(s))”" is equal to I — Hy, ,,, where H,, ,, is the transfer P i
function from v, to y;. Hence (I + M, M,)™" necessarily is stable if the interconnec- :-;l‘ ;
tion is. § {404
N
Alternatively, we have the multivariable Nyquist test, which in the case that both systems S& N
are stable, has a particularly simple form. q A
]
b

o
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::‘ Theorem 11.2 Suppose both M, and M, are stable. The interconnection is stable if and o
6' . . . . o
B only if the Nyquist plot of det (I + M,(jw)M;(jw)), does not pass through or encircle the PS
c:: origin. as w varies from —co — co. L
)

T

g 11.2 Representing unmodeled dynamics

;\' ;
os In this section we describe a simple set of assumptions for modeling components with =4
§

::': unmodeled dynamics. As mentioned earlier, similar, but more sophisticated assumptions 93
R exist, [FooP]. %
", Consider a “two” input, “two” output system G described by the following state space ﬁ
I. .

;’(: equations

::. z A B, B, z

e n|={C Du D Uy (11.1) E
A Y2 C2 Dy Dy Uz *
I

;‘k where A € R™", B; €¢ R"*"™,C; € R™** D,;; € R*" X", We will use this state N
i" space description to represent an uncertain component. We begin with the following b
". assumptions: |
A . . &
3 o The nominal model for this component is given by the quadruple (A, B;, C3, Da;).

X

‘.: The pair (A, B,) is stabilizable, and the pair (A, Cs) is detectable. 5
) o
?' [ ] 6’(D11) S 1. ®
N ?:;
:: The uncertainty in the component will of course be parametrized by a linear fractional

] <
4 transformation. Let A be any given block structure, with overall dimensions n,, x n,,. i"'}t
Eal - 9
X With respect to this A, define the following set of state space quadruples

: oL L N -
3 Ra = {(A,B,C,D) : Ais stable, D +C (jwl — A)” Be Afor allweR} (11.2) X
M A
; ; where the matrices are A € Rmxm, BeR™mn e R ""‘,ﬁ € R™1 %" and m ranges n :

’ over all nonnegative integers. Furthermore, define a subset of Ra as -

) -~ ~ ~ ~ ~ ~ . ~\ =1 ~ .'-
» BRa = {(A,8,C,D) e Ra:supa (D+C (jwI - &) B) <1} (13) &
P w &
b The set of components that the pair (G, Ra) define are 9

. - - o
kD .’L' A+~BzDZCI . BLWC . Bz +~B1DZD12 X = :
A (| = BzcC, A+ BZD,,C BZD, ¢ (11.4) % |
‘:: y Cg -+ Dg]DZC1 D21WC D22 + DleZDlz u Ly
h
]

L)
DR - P R A AR A A g - e AR A e KA g o M T T N et T P At TR
RO o Pe. |. I , Loaind '. .'\-'r v "‘ e, \o. .'q " .r e "J. -F ‘J‘. 'F DO 2 'n My,
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where Z := (I - Duﬁ)-l and W := (I - DDu)—l, and the quadruple (A,E,C,é) €
BRA.

In a diagram, this is just F, (G(s),A(s)), where A(s) = D+C(sI-A "' B. This is
gr

} shown below.

A.‘

;‘ J u G y

) Figure 11.2 General, Uncertain Component Model

This is the general model we will use for a component with structured, unmodeled dynam-

ics.

Remark: To simplify the discussion, we will treat the perturbations as actual components.
K This is implicit in the state-space manner that we have written the perturbed com-
ponent. That way, we avoid the technical dilemma which occurs when modeling,

say, the constant component g = 1 using a LFT on G defined as

a

0
G(s) := 3';;0 . (11.5)

Note that regardless of A(s), the linear fractional transformation F, (G,A) =1, so
that this does indeed represent the constant component g = 1. However, the u test
we are about to describe would give that the uncertainty in this component, if large
enough, can cause instability in any closed loop system with this component. If we

treat the uncertainty as components, then this interpretation is correct.

Finally, we define an uncertain plant as a linear interconnection of uncertain components,

5 that is itself an uncertain component. Therefore, through its actual inputs and outputs, the

dynamics are stabilizable and detectable. A collection of uncertain components defines a

new uncertainty structure that also has the block diagonal form. Simply by reordering each

’ of the separate uncertainties, we can assume the structure is like that defined in section 3.

N The plant also has a multivariable exogenous disturbance and multivariable error. These
V are additional injections to the component dynamics, and various internal signals from the
components. Hence, the uncertain plant is described by a known dynamical system P(s),

n h P ™ » LR LIRS 'R LY SR = [P R Y.t LUV R 5 ® Tt It
et 0!‘;"..‘! OLCAS N O A LN 2 M N M X ML M M Gl S a ™ A N R AR e Ot X, al, W {0 ‘o»t.'.o. ». 3 -D ; D- ‘F .I»
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\ o 4
: 2 3
& and a given uncertainty set A. In particular, P is described by the state space equations ,
i A B B B[« N
R n|_|C Du Dz Dis||w (11.6) B
i Y2 Cy Dy Dz Dy Ug ' y :
A Y3 C3 Dsi D3z Ds3 | | us ‘;.; Y
where A is stabilizable through Bs, and detectable via C3. Let K stabilize the nominal, ie. ]
a K stabilizes the dynamic system described by A, Bs, C3, D33. The diagram below shows ;J'_,'\ 0
the perturbed plant with controller K. The signal u3 is the manipulated variable, and this - o
depends on the measurements, y3, via the control law u3(s) = K(s)ys(s). The signal u, is L 3
4 the exogenous disturbance, and y, is the error. A stable, finite dimensional A(s) € BRAa Ya g
. is the perturbation, and this relates u, to y; via the “feedback” u;(s) = A(s)y;(s). < B
\ i1
‘ A :
3 _‘ o
. uz“l_’{ P Y s ;\M
u:__ﬂ T)’J ,' "
l K ' :‘
N we
) Figure 11.3 Perturbed Plant with Feedback Controller = ;
". What questions would we like to answer? :.{J F
Y v
! o determine whether the closed loop is stable for all stable A(s) € BRa, and )
X e if so, determine how large (in || - || norm) the perturbed disturbance to error map E“ ‘
) '
i t. ‘
: will ge v 3
' R

11.3 Frequency domain robustness tests

We have the following facts/assumptions:

S

e The controller stabilizes the nominal, hence the internal dynamics of F; (P, K) are .-

‘ stable. Let M(s) := Fi(P(s), K(s)), the closed loop transfer function from (u;,us) FIEN

‘: to (y1,y2). The perturbed disturbance-to-error transfer function is F, (M(s), A(s)). ' :
’ o The perturbations are themselves viewed as stable components. Therefore, the per- ¥ "

X turbed closed loop is stable if and only if the transfer function (I — M, (s)A(s))™" is - &

; stable. As we shall now see, this can be readily cast as a u test on the loop transfer ~ i

Y function My, (jw). &' :

My .'l,u'ln".a _ & .Q".\"J".\"." .‘.!" ‘ 3 , \ Ay - ""( ' iod y ..{- ', F' K} .Ll,- ” | ~" \" A 'Q" A .\.l‘.l J ! . A A
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Theorem 11.3 (Robust Stability) The perturbed closed loop is stable for all A(:) €
BRa if and only if sup ua (M11(jw)) < 1.

Proof:

— As we have pointed out, we need only check the stability of the transfer function
(I — My (s)A(s))™! for eachAA(s) € BRa, from Theorem 11.1. Let A(s) be an

D arbitrary element of BRA, and suppose sup pa (My:1(jw)) < 1. Both are sta-
ble, therefore using Theorem 11.1, we only need to show that the Nyquist plot for

0 (I + M11(jw)A(jw)) does not pass through or encircle the origin. For € > 0, but suffi-
ciently small, the interconnection of M;; and €A will be stable by continuity of eigen-

! values (or small gain theorem). Hence the nyquist plot of (I + éMy;(jw)A(jw)) must
not pass through or encircle the origin. For every € € [, 1] and every w € [—oc, 0],

F(eA(jw)) <1

p (M (jw)] <1

Setting ¢ = 1 in (11.7) gives that the Nyquist plot for (I + M;,(jw)A(jw)) does not
v pass through the origin. But, it cannot encircle the origin either. To see this, recall

— det (I + eMy; (Jw)A(jw)) #0 (11.7)

that for small enough ¢, it did not encircle the origin. As ¢ /' 1, the Nyquist curve
of (I + eMy;(jw)A(jw)) deforms continuously with €, and (11.7) guarantees that it
never passes through the origin. This implies that the number of encirclements

LY A2
2 2 A@ XD
R,

LA

.l‘.

o I'.d'\i'

" must stay the same, namely zero, so the actual perturbed loop (¢ = 1) is indeed

. £

stable. A rigorous homotopy argument for this deformation proof can be found in

(CheD].

— Suppose sup p[Mi1 (jw)] > 1. Then for some finite ©® € R, u[M1;:(j@)] > 1. Choose a
constan:, complex matrix A; € A such that det (I + M1;(j@)A:) =0, and 7 (A,) <
1. This is always possible. Then the interconnection with M;, and A, has a pole at
. s = jw. It is a fairly simple task [CheD] to find a A(s) € BRa that interpolates A,
A at s = jw. This choice for A(s) destabilizes the loop, and completes the proof. §

x

' Next, we answer the question of robust performance - “How large does the perturbed

disturbance-to-error map, F, (M(s), A(s)) get as A takes on various values in R; A?

",

Theorem 11.4 (Robust Performance) Let P be an uncertain plant as defined in (11.6), :."?E )
" A be a given uncertainty structure, and K be a LTIFD controller that stabilizes the v
nominal part of P, ie. K stabilizes the quadruple (A, B3, Cs, D33). Define an augmented e
structure A as ::fz )
; A= {diag[A,8,]: A€ A, A, € CP2¥a ) (11.8) PG
-ﬁﬁ
-"‘,‘
d .-‘.:
\.:.x:
(AN
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so that A is compatible in dimension to M (jw) == K (P, K) (jw).

Then, the perturbed closed loop is stable, and ||F, (M, A) ||oo < 1 for all A(s) € BRA if
and only if sup p5 (M(jw)) < 1.

Proof:

« First, we always have
sup pa (Mu(jw)) < suppa (M(jw)) <1 (11.9)

so using the Robust Stability theorem, for all such A(s), the perturbed loop is
stable. Let A(s) € BRA, and let w be arbitrary. Note that A(jw) € A and
7 (A(jw)) < 1. Since p i (M(jw)) <1, Theorem 8.3 implies that

& (Fu(M(jw),A(jw))) £ 1 (11.10)
Therefore, for such a A(s), we get that | F, (M, A) || < 1.

— Suppose that sup u4 (M(jw)) > 1. If, in fact, sup pa (M1 (jw)) > 1, then the loop can
be destabilized using an element of BR 5 as Jescribed in the proof of Theorem 11.3

A 0 ] € A such that &(A) <1

Otherwise, choose a finite @ € R and A := 0 A
2

and

det (I - M(j@)A) =0 (11.11)

Again, use the results in [CheD] to interpolate a stable, rational A(s) such that
IA(8)llo < 1 and A, = A(j@). Then,

[ 7]-[habs Mata |17 s ) =0 w

Since 7 (A,,) < 1, (11.12) implies that
5 (Fu (M(j), A(j&))) > 1 (11.13)
which proves the desired result. {
These theorems can also be scaled so that the bound on robustness is not 1, but some

other positive number. The details are the same, using the basic ideas from the theorems

in section 8.2.
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12 Counterexamples showing that 1 need not equal
the upper bound

This section shows, via two detailed examples, that u (M) is not always equal to the
(DM D™") upper bound. An appealing aspect of these examples is their simplicity, each
using only elementary linear algebra.

12.1 2 repeated scalar blocks

We begin with the block structure s = 2 and f = 0. We use the results from secticn 9 on

uncertain difference equations to derive the counterexample.

12.1.a Let a € (0,1) and v € (0,1) be given. Define the matrix M € R*** by

0 1 0 1

N 0 4 0
M = % 0 a 0 (12.1)

0 -2a 0 —a

Define a block structure A := {éI,x: 6 € C}. We will investigate the stability of
the difference equation

Trer = FI (M, A) zi (12.2)

with various assumptions on the uncertainty A € A. Recall that the results of

section 9 addressed just this problem.

12.1.b For all A € BA the LFT F; (M, A) is well defined, and appears as

1 —aé 1
Fi(M,A) = L+ab v (12.3)

1+ab
.71—a5 0 J

Note that for each such A, the spectral radius of Fi(M,A) is simply /%, which
by assumption is less than 1. Therefore, for fixed, but unknown uncertain-
ties, A € BA, the system in equation (12.2) is stable. Consequently, with respect
to the structure A := {diag [612x2, Q) : 6 € C,A € A}, Theorem 9.1 implies that
HA (M) < 1.
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12.1.c Consider the time varying system
Trpr = Fy (M, Ag) 24 (12.4)
where Ay € BA for each time step k. Take A, := Ipx, when k is even, and
Ay := —I,42 when k is odd. Then for k even, z,,, depends on z; by the relation
l+a 0 l1—a

Ty = 1+a l+a . (12.5)
Y

which simplifies to

0

(1-a)
(1+a)

Ta=ey

0 0

Tryp2 = Ty . (126)

For any v € (0,1), it is easy to chose a € (0,1) so that (12.6), and hence (12.4), is
unstable. For such choices then, we must have

inf & (DMD™') > 1 2.
o (DMD™) 2 12:)

otherwise, by 9.1.c, the time varying system in (12.4} would be stable for A, €
BA, regardless of the variation with k.

Remark: A bit more analysis can show that by proper choice of 4 and a, the value of

int 5 (DMD™)

can be made arbitrarily close to 1 + /2 while 5z (M) < 1.

12.2 1 repeated scalar block, 2 full blocks

Next is an example for a block structure with s =1 and f = 2. It is broken down into 8

facts.

12.2.a First, let A = {diag [6;,6,] : 6, € C}. Then (with respect to this structure) for
any complex 7 # 0,
0 11
# [ r 0 ] =1

This follows as a special case of Theorem 3.4.

. . .
R R A R
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12.2.b Let a € C with |a| < 1. Define G on |6| <1 as

0  ltas
G&)=| s % (12.8)
Faz 0
Note that everywhere in the unit disk, G is defined and looks like [ ?_ % ] Hence
from 12.2.a
sup 1 [G(8)] =1 (12.9)

111

12.2.c G in (12.8), is a linear fractional transformation. In particular, define the matrix

M by
a 0 2¢a 0
0 —a 0 —2a
M= 0 1 0 ) (12.10)
1 0 1 0

It is simple to verify that for each |6] < 1, G(6) = Fy, (M, 6132).

12.2.d Define A; = {6I342 : 6§ € C}, and A, = {diag[6;,6;] : & € C}. Certainly u, 5 (M)
makes sense (dimensions are compatible), and p12 (M) > 1, since p (M) = 1.
Using (12.2.0) and (12.2.c), and Theorem 8.3, with 8 = 1, gives ;2 (M) < 1.
Therefore py 2 (M) = 1.

12.2.e Define the correct scaling sets D; and D, compatible with A; and A,. For any
B >1,and any D, € D,

sup 7 (D2F, (M, 6Iox2) D7) >

. 12.11
lsl< B —lal ( )

This follows from the fact that for any D, € D,,

0 —
D2Fu (M, 612)(2) Dg_l - d2 1 - (16 d2 1- a6 (1212)

d—11+a6
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and from the behavior of the nonzero elements of G(6) on the edge of disks of radius

l, which is shown in the figure below.

B

| ]
magnitudes
& = %82”0 _4

g+l ]
A-lal Ju A\

8=lal /
B+]al T L.

angle, 8

Figure 12.1 Magnitudes of Nonzero Elements of G(J)
12.2.f Fact: Let v > 0. If thereisa A, € Ay, 7(4,) < % such that

e I — M, A, is invertible
o a[Fu(MaAl)] 2y

. [ D1 O My, M D' 0
ui’é%l"[( 0 1)(M21 Mzz)( 0 1)127' (12.13)

This fact is simply the contrapositive of Lemma 8.11.

then

12.2.g If we choose a 3 > 1 such that %*_—'—{S{ > B, then we can apply the results from

(12.2.e) and (12.2.f) above to conclude that
. e -1{ D1 O My M, ) D' 0
Dlar.lli;za {( 0 D, ) ( My My, 0 D!

The logic is as follows: first suppose 8 is chosen so that g—’_t%zil > . Then from
equation (12.12) we know that for every D, € D,, there is a § € C with |§] < % such
that

v

8. (12.14)

5 (D2Fu (M, 81x2) D7) = B (12.15)

This satisfies the conditions of (12.2.f), therefore, for each D, € D,

. _ D, 0 )(Mn Mlg) D' 0
D}g%la[( 0 D, My My 0o D! 2 B. (12.16)

-y Y ” ™
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a
Carrying out the infimum over D, in (12.16) yields
. -1
\ jof & (pMD) > 8 (12.17)
3 Therefore the question becomes: “What is that largest S such that g—fH > £ 7" Sim-

ple algebra gives that this largest fis = lo#1+y l; PAolel*1  Note that as la| /1,
the quantity 8/ 1+V2.

12.2.h In summary: Let € > 0. Choose a € C, |a] < 1 such that

)
0 al+1+4/|a|? +6|a| + 1
la laf” + 6lal >14+vV2-e (12.18)

2

o
=3

Define M as in (12.10). Then, with respect to the augmented structure described in
(122.d), p(M) =1 but iaf5(DMD)>1+V2-c.
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n This example eliminates many other block structures as well. Since the full blocks were ,[-;.;-‘
b 1 x 1 in this example, they may be viewed as repeated scalar blocks instead. Therefore, .};'}
this counterexample works for s=2, f=1, and s=3, f =0 too. N::j

vy

4»’5&.‘.

L %

ho_s |

12.3 Conclusions

In light of this example, it appears that the upper bound can be quite far from the actual

e "l:}'r

v value of yu, especially when s # 0. For instance, in this example, the upper bound (in the
limit) equals (1 + \/i) X g. Limited computing experience with uncertainty structures
having s # 0 indicates that there is often a gap, though usually not as large. For block

- -
-

0
o

structures with no repeated scalar blocks, s = 0, this contrasts directly with our computa-

tional experience. In that case, the worst known ratio of upper bound to 4 is 1.14, [MorD],

L] A‘.'
- » . . . K 4
o and usually, it is much closer to 1. Given that the upper bound can be computed, and in :'.::.,-‘
N o,
general, it is impossible to verify that a lower bound is indeed u, how should this all be ;_;
‘ interpreted? \'_ﬁ
o
Suppose an uncertainty structure has only full blocks, and the perturbations are modeled ;ir
'. as linear, time invariant. Using the constant, state space u test in [DoyP] requires that the f.‘;'&
actual uncertainty structure be augmented with a large (size of state dimension) repeated ":-"' 1
. c e e . PEACY
scalar block. In view of the counterexample, it is likely that the upper bound will not "o
equal y, and the conclusions will be conservative. In this situation, a frequency domain .
. upper bound test, [DoyWS), is appropriate, since it scales (a peak > 1 does give useful ::
)
Y information), and with this block structure, we always have found u and the upper bound "'
':‘.'a'
\) - ‘;
’ _
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very close. It is important to realize that the frequency domain test only gives conclusions - '
about linear, time invariant perturbations. )

LIS,

If the perturbations are time varying and/or nonlinear, then, in general the frequency | 0.::

domain tests are not valid, though [Saf2]| derives conditions on the frequency dependent '5‘.3 %

scalings which allow for conclusions about slope bounded nonlinearities. The upper bound R

approaches based on constant matrix operations (for example, the optimal constant o~ .'

scaling, section 10), handle this type of uncertainty, and the motivation which led to 2 A

their development was the relationship between u and the upper bound, and the role this a::

difference plays in the behavior of linear fractional transformations. %3 ’,
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13 A power method for the structured singular value

This section presents an iterative algorithm to compute lower bounds for the structured
singular value. The algorithm resembles a mixture of power methods for eigenvalues and
singular values, which is not surprizing, since the structured singular value can be viewed
as a generalization of both. If the algorithm converges, a lower bound for p results. We
prove that u is always an equilibrium point of the algorithm, however, since in general
there are many equilibrium points, we also discuss heuristic ideas to achieve convergence.

In [FanT), the calculation of u is reformulated as a smooth optimization problem. As with
all of the known exact expressions for u, the function that is to be maximized has local
maximum which are not global, so in general the method yields only lower bounds for u.
Similar comments can be made for the ideas in [Doy] and [Hel], as well as the algorithm
in this paper. The contribution here is yet another lower bound algorithm to aid in the
analysis of robustness of systems with structured uncertainty. This section addresses the
lower bound, and develops a power algorithm aimed at quickly finding local maximums of
r:BA — R, defined by r (A) = p(AM). Some of the results are generalizations of those
found in [DanKL].

Since we will be interested in local maximums of the function r (A) = p(AM), we be-
gin with some facts from perturbation theory, which will assist in characterizing local
phenomena.

13.1 Matrix Facts
13.1.1 Derivatives of eigenvalues

In this section we review the differentiablity properties of eigenvalues and eigenvectors of
matrices depending analytically on a real variable. All material comes from [Kat].

Suppose M:R — C™*™ is an analytic function of the real parameter ¢t. If A, is a eigenvalue
of M, := M(0) of multiplicity one, then for some open interval containing 0, this eigenvalue
is a analytic function of ¢, as are the eigenvectors associated with it. That is, suppose there
are nonzero z,,y, € C", satisfying

Yoo = 1
M,z, = Az, (13.1)
M;yo = Aoyo

Then there is an ¢ > 0 and analytic functions z:(—¢,e) = C", y:(~¢,€) = C™, A:(—¢,€) —
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C such that for all t € (—¢,¢)

y'r=1
Mz =)z (13.2)
My = Ay

This follows from (Kat]. Hence, we can differentiate and obtain

A0) = y;M(0)z, (13.3)

13.1.2 Linear algebra lemmas

The next two lemmas are elementary linear algebra. They will be used in the main theorem
of the next section.

Lemma 13.1 Let y,z € C" withy # 0 and = # 0. There exists d € R,d > 0, such that
y = dz if and only if Re (y*Wz) < 0 for every W € C™*" satisfying W + W* < 0.

Proof: The “only if” is obvious, so we just prove the “if”. As usual, let y; and z; denote
the i’th element of y and z, and W, ; denote the 7, j element of W € C™*". Begin
by letting W be zero everywhere, except in the ¢,i element, and set W;; = o; + jw;
for some o; < 0 and w; € R. Obviously W satisfies the hypothesis. Then

Re(y*Wz) = 0; Re(fiz;) — wi Im (giz;)

If Im (giz;) # 0, then it would be possible to choose w; € R to violate the Re (y*W<z) <
0 hypothesis. Hence Im (fiz;) = 0. Similarly, with the only restriction on o; being
0; < 0, we must have Re (y;z;) > 0. Therefore, for each 7, we can write

yi = s;e’%

T; = rye?¥
where s; > 0,7; > 0, and 8;,v¢; € R. From the above discussion, it is clear that for
each i,

;=0 or r=0 or §;=1; (13.4)

Now, let I # k be two integers < n. Let w € R be arbitrary. Define a matrix W
by Wiy := —e™ %, Wy, = e’ and zero everywhere else. Note that W + W* = 0, so
trivially W satisfies the hypothesis. In this case

Re(y"Wz) = —gri cos (0 — 1 — w) + sirycos (0 — ¥r + w)

Since w is free and neither z or y is 0, we have for all 7, s; = 0 if and only if r; = 0.
Consequently, suppose that s; # 0 and s; # 0. Recall from (13.4) that this means
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Yr = 6 and ¥ = §,. We claim that s;7, = s;r;. To see this, suppose instead that
skry # 8irg. By choosing w := 0 — 0, or w := 7w + 8, — 0, we get that

Re(y"Wz) = |sgry — sm| > 0

This contradicts the original assumptions, hence we must have s;r; = s¢r;. Therefore
St Sk

) rT

for every k # I with s; # 0 and s; # 0. Define d > 0 to be this ratio. For every ,
we have y; = dz; as desired. {

P i
- " el

\ Lemma 13.2 Let a and b be two nonzero vectors in C". Then there exists a hermitian,
positive definite D € C***, such that Db = a if and only if b*a € (0, o).

Proof: Again, the “only if” is easy. Conversely, suppose that ||b]] = 1. If not, simply
scale appropriately. Let B, € C™*(*~1) such that the matrix K := [b B,] € C**" is
unitary. Decompose a in this basis, ie. find a scalar o € C and ¢ € C*~! such that

n a=ab+ B, (

e

By assumption, a is real and positive. Let W € C(*~1*("~1) he any hermitian matrix A
. such that W — 2(¢" is positive definite. It is simple to check that i
’ - g
- e

[¢ 4 C P (]

D:=K K* LER

[ ¢ w ] -2,

N T
works. if
- N
'. ! 3

13.2 Decomposition at p

a0t

y -

! We need to define a set D,4, similar to D from section 3.1. It is the same as D, except the E"*
,.. elements are restricted only to be positive semi-definite, rather than positive definite. ;‘_\-f"
¢ vl

Dy = {dia,g [Dl,.. .,D,,dIIml,...,demf] :D; e CT* D, = Dr >0,d; € R, d; > 0} -"'.T

4 u\:-‘\
[ (13.5) :ns;_:
N S
h‘;h"
. Theorem 13.3 Let M € C"*™ be given, and suppose A\, > 0 is a distinct eigenvalue R
of M, with right and left eigenvectors = and y respectively, and y*z = 1. Suppose that -.,- i
- p(M) = X,. If the function r:BA — R defined by r(A) = p(AM) has a local maximum )
4 (with respect to BA) at A = I then there exists a D € D,y such that y = D?z. . ]
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:.' Proof: Let G € A with G + G* < 0. Obviously, G appears as
! .
diag[g11ry,-- -1 95s1r,,G1y ..., Gy) (13.6)
0w
:s: where Re(g;) <0, and G; + G <0 for all ¢ and j. Obviously, at t = 0, e = I, and
::: e® € BA for all t > 0. Define a matrix function W: R — C™*" by W (¢t) := eG* M.
':: Note that at t = 0, ), is a simple eigenvalue of W(0), with z and y the right and
ad
left eigenvectors. For some nonempty interval containing 0, this eigenvalue is always
, ) simple, and hence there is an analytic function of the real variable ¢, A(¢), defined
!:‘ on that interval, such that A(¢) is and eigenvalue of W(t) for all ¢t and A(0) = A,. It
,.:: is easy to calculate /.\(0), namely
. A0) = y*W(0)z = A\y*Gz (13.7)
|||
E‘ By hypothesis, A, > 0, p(M) = A, and the function p (AM) has a local maximum at
A = I. Therefore p
Y Re | —A(2) <0 (13.8)
di t=0
:;. which says that the magnitude of A must be nonincreasing at ¢ = 0. Partition z and
h y compatibly with the block structure A,
4:: [z, ] [ Yy ]
N Zr, Yrz
J x" yrl
M T = ‘ y = 13.9
.l ZTm, Y Ym,y ( )
:’.Q Ty Yma
EX)
:: L xm‘f J L ym[ ,
:: where z,,,y,, € C™ and T, ym, € C™ for each i and j. Using this “block notation”,
W
w0 and substituting (13.6) and (13.7) into (13.8) yields
s !
E:: Re (; g,-y:'_a:,,. + J-X_:ly:n’ajxmj) <0. (1310)
X = =
]
: This must hold for arbitrary G € A satisfying G + G* < 0. Applying lemmas 3.1
L and 3.2, we conclude that for each ¢, there is a D; = D € C**" D; > 0 such that
A Yr; = Diz,; and for each j, thereis a d; € R, d; > 0 such that y,, = d;z,m,. Arranging
:: all of these D,’s and d;’s into one block diagonal D, and taking the hermitian square
::; root proves the lemma. §
h
L)
\ Remark: The only restrictive assumption we have made in the above lemma is that the
W eigenvalue ), is distinct. This assures differentiabilty. Since A, is a solution of a
" Amlaijm,axlz\.- (MA)|, it is likely that at the maximum it will be distinct.
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13.3 Decomposition

Recall the definition of V from section 7. It was introduced to find descent directions for

&. We will generalize the definition to be valid for any singular value, not just 5.
Let M be a complex matrix with SVD
M = gUV™ + U2, V,". (13.11)

In this setting, B is any singular value of M, not necessarily (M), but none of the singular
values in X, should equal 3. We use the integer r > 0, to denote the multiplicity of $.
Hence U,V € C™", U*U = V*V = I,,U,,V, € C**) UsUp = V3Vy = I, _,.

We proceed to define the set Vg 5. Partition U and V' compatibly with A as

A By
A, _| B,
| By | L Fy ]

where A;, B; € C*", E;, F;, € C™i*r,
For n € C”, with ||n|| = 1, define the following components

P! = Ain*A; — By B

Let Vs C X be the set of all such P".
Vg :={ diag [P],...,PLpl,...,p}.,] : P,p] in (13.13),n € C", |Inf = 1}. (13.14)

Note that here we use two subscripts on V. The first is the matrix, and the second is the
singular value in question. The main reason we introduce Vs g here is that if there is a
singular value, 3, of M, and 0 € V4, then 8 is a lower bound for u (M).

Theorem 13.4 Let M and a compatible block structure A be given. Suppose (3 is a
singular value of M with multiplicity r. Define V5 as in (13.14). Then 0 € Vi if and
only if there exists a vector ¢ € C*, a matrix X, € C"*", a matrix ¢ € Q, such that
Izl =1,2* X, =0, X,z =0, and

QM = fzz* + X (13.15)
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Proof: Let the SVD of M be
M = BUV* + U2,V (13.16) -

— If 0 € V3 then there exists a n € C7, ||p|| = 1 such that

Am* A" — Bim*Bi* =0 i<
" (E;"E; - Fi"Fj)n=0 j<f-1

These relations, and the partition in (13.12) imply that there is Q € Q such that 55

QUn=Vn (13.17) .

Define £ € C" as the above: z := QUn = V7. Since ||| = 1 and U and V are
isometries, ||z|| = 1. Simple manipulation of (13.16) and (13.17) gives

(QM)z = (QM)Vn=pQUn=0oVn =Pz
" (QM) =n"U"Q" (QM) = Bn"V" = Bz” &
Defining X, := M — fzz* completes the decomposition
: +— Suppose Q, z, and X, are given as in the hypothesis, so that

QM = fzz* + X,

f Define M := QM. A singular value decomposition of M is g

M =B (QU)(V) +(QUa) Z2 (Va)'

Lal

Hence f is a singular value of M, and Mz = Bz and M*z = Bz, and so there exists
| a vector 7 € C", ||n|| = 1 such that

&

zt=QUn="Vy

This implies that 0 € Vs 5 as desired. §

B

It is obvious from the decomposition that 3 is a lower bound for (M) since B is an

N

eigenvalue of M = QM. The following corollary follows immediately.

Corollary 13.5 Let M and a compatible block structure A be given. Suppose D € D,
and that f is a singular value of DM D~' with multiplicity r. Define Vppp-1 4 as above.
Then 0 € Vppp-1 5 if and only if there exists a vector ¢ € C", a matrix X, € C"*", and
a matrix Q € Q such that ||z]| =1, z* X, =0, X,z =0, and

L
- &
QDMD™! = fzz* + X, (13.18) *
OIS,
{
A P s YA Y D R T A R A Ve
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The main result of this section is that there is (almost) always a decomposition as in
(13.18) with 8 = u(M) (remember, any 3 satisfying (13.18) is a lower bound for u(M)).
A preliminary result toward that result is next.

Theorem 13.6 Let @, € Q be the optimizer for max (QM), and suppose that the eigen-

value associated with p(Q.M) is distinct, call it A,, and A, is real and positive. If z and y

are the right and left eigenvectors of the eigenvalue )\,, then there exists a D € D,q such
, that OM \
¢ Mz = A,z
@ 2*DQM = gD (13.19)
" Remark: If we consider local maximums of a function #: Q — R given by 7 (Q) = p (QM),
then the above theorem is not true. For 7 as defined here, there exist examples where -’2_,
K 7 has a local maximum, but the decomposition described in (13.19) does not exist. ’.'
®
Proof: By Theorem 13.3, any maximizer of max (Q M), is also a maximizer of max (AM). o
o . QeQ i QeBA e
i Define M := Q,M, then A = I is a local maximizer for Jmax (AM ) . Apply lemmas ;".:
€ 3% Y
13.1 and 13.2 to prove the theorem. ﬁ;-:.'.
> A
In order to state the main theorem, we introduce some additional notation: partition the
- vectors z and y compatibly with the block structure,
[ Zr, ] [ Yr1 ]
o w:‘z yv.'z g
v . = Lr, = Yrs 9 hCC ‘
; ’ Tmy ’ y Ym, (13.20) NI
Tme Yma Bty
: : °
», [PLY
: [ Tm, | [ Ym, N
with z,,,y,, € C™ and o, ym, € C™/. We call these the “block components of z and y”. i
A
Theorem 13.7 Let the assumptions of Theorem 13.6 hold. Consider the block compo- e
) nents of the eigenvectors x and y as in (13.20). If for all 4, y},z,, # 0, and for all j, neither N
! it
) Tm; DOT Y, are the 0 vector, then there exists a U € D such that ::"\
S0
QOD.MD“1 (Dz) = X, (D:v)_ (13.21) Al
(Dz)"Q,DMD~' = ), (Dz)". '
Remark: This result was first shown in [FanT], for the case of s = 0.

A

. " . .y - . - e s - ;
!.'x"?.\' '-‘.‘c ..A....'!ﬁ,.lv.‘ﬂe.l‘!'l.'.'t‘."l'..\‘,'\‘...A'..n.. 't"'o‘"n‘ .J"\ .‘t N An X '.l"'l‘ & ?.» X '.u SN u‘\c&t . .' . ‘ L \ " "'f "' ‘J.‘; "t N ..'. '\.!.l ?‘l"
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Proof: These additional assumptions guarantee that the D’s in Theorem 13.6 are in fact
positive definite, rearranging equation (13.19) gives (13.21). This is the decomposi-
tion, since Dz is both a right and left eigenvector of Q,DM D! associated with the

eigenvalue A,.

13.4 Lower bound power algorithm

How can this decomposition be used? In this section, we propose an iterative algorithm to
find such decompositions, and therefore get lower bounds for x. The possible advantage
this algorithm has over finding local maximums of the max p(@QM) lower bound is that
there will be no costly eigenvalue/eigenvector evaluations, which would be necessary for
cost/gradient calculations. Numerical experimentation indicates that the algorithm often

completes successfully and quickly.

Rewriting (13.21), we want to find a Q@ € @,D € Dy, § > 0, and z € C™ with ||z|| =1

sucl that
QDMD 'z = 8z
D IM*DQ*z = Bz
which can be rewritten as
M (D™ 'z) = B(D™'Q"z)
M*(DQ*z) = (Dx).

For a given D,Q, and z, define vectors a, b, z, and w by

b:= D'z

— -1/ )=
o gQg * (13.22)
w:= Dz

With this definition, we have Mb = 0a and M*z = ow. We can eliminate z from (13.22),
and redefine D = D? to get

b=Qa
z2=Q"w
z=Da
b= D"lw

We would like to write these four new relationships in a manner that does not involve the

matrices @ and D. With a few technical conditions, this can be done. In order to simplify

2
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the upcoming formulas, we will consider a block structure with s = 1, f = 1. By simply 2 g

duplicating the appropriate formulas for additional blocks, it is straightforward to eztend :

the algorithm to more general structures. Hence the sets D and Q look like W, E

D = {diag[Dy,diI,.,] : Dy € C"*", D, = D, dy € R} (13.23) o

W

Q= {diag [@1],,Q2) : ¢iqn = 1,Q2 € C™ ™, Q3Q, = I}- (13.24) f:E; g

T O O A A D e S S i SR A
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§ :
' r ;»
With respect to this, we will partition the vectors accordingly, so z = [ 2 ], where ‘;3.'
z, € C™ and z; € C™, and likewise for the other vectors. o
i
0:'5:0:
: '
. Lemma 13.8 Letr; and m; be positive integers. Let z;,w;, by, a; € C™ and 2, wz, by, a; € 0 '::
C™: be nonzero vectors with ajw; # 0. Then, there exists a D € D, and Q € Q such that o
[
b=Qa A

z=Qw

z = Da .}E
b=D"1w mf

if and only if ®
aw; X0
2 =W &
ajw | ) :
ol ;
: llaz|| P
b wya; N
1= Ty °
|wia | "
. bl i
= U
: fwa] o

§ 2
Tt i

Proof: :.
E: — Follows by direct substitution. o

‘.7
£22

g — Let ¢ = I%TTT[’ since this is well defined. Likewise, choose d; = ||||w2|||| . By assumption, Y
az 5
d; is well defined, and nonzero. E_ !
i
F Obviously, |[wy[| = ||z2[l, so let @, be the rotation that takes w, into z;. A quick b:
\ 8§
~ calculation shows that Q, also rotates b; into aj. ;'4‘ 0
o
" 1 1 o
= e— Wy = ——20 = LS
f\#‘j Q202 d; Qzw; 4, 2 = az ‘:E \

Next, we calculate ajz;. Plugging in gives ajz; = |ajw;|. By assumption, this “n]

Loy m 4
L s

Y 'y
[4

is nonzero, hence Lemma 13.2 yields a hermitian, positive definite D; such that

Dya; = z;. As we hope, D, takes b; into w; too.

Dby = g1 D1ay = 12y = wy o

R =2
";;r'..{

Defining D and @ in the obvious manner completes the proof. ®

This gives us the main theorem. Ay
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Theorem 13.9 Let M € C™*" be given, and let A be the two block (s = 1,f = 1) \
structure defined above, with block sizes ry and m,, where ry + m; = n. Suppose f > 0 is - .
given. Then there exists Q € @, D€ D, z = [ 2 ] € C*, X, € C*™(*=V) such that ~ ":
r',‘
lall = 1,21 # 0, 22 # 0 &)
- 1
X, =0, X.z=0 (13.25) s
QDMD™! = Bzz* + X ﬁ: 3
143 V)
if and only if there exists nonzero vectors zy,wy, b,a; € C™ and z;, w3, by, a; € C™ with :{ f
ajw; # 0 and g
Ba = Mb >
S
a;wl Y {
2] = =W Y KN
ajw,| by
| w2l 0
22 = asz &
a2l (13.26) 3
Pw=M*2 et
be PR
b= —tay .
lwlall T 3
, = llaz|l N s
[|w2| s
=
.
Remark: In order to find decompositions using the representation this theorem allows A ¥
(equation (13.26) - free of Q’s and D’s), we can restrict ourselves to unit vectors ‘. '
a,b, z,w. Why? Suppose we find nonzero vectors satifying (13.26). Examining these o) N
equations, it is clear that scaling z and w by a # 0 and scaling b and a by § # 0 .:j
does not affect any of the equalities in (13.26). Since these equations always imply g" |'
that ||z|| = ||w||, and ||a|| = ||3]|, we can indeed look only at unit vectors. RN
(]
7 T,
| | 4
In the above theorem, we have written the conditions (13.26) in a suggestive manner. We ol
»
will attempt to find solutions to (13.26) in a iterative fashion. In particular, for : = 1,2, -
A
]
"ol
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let vectors a;,, b;, , z;,, and w;, evolve as

Br+18re1 = Mby

" 2 — w;kalux
g:> Tt |w;ka1k+1| t
. ol

k+1 k41
o ) "a2k+l” (13_27)
A5 Brs1Wiyr = M* 24y

a1, W1

o by, = —xt1 ki,
3 s Ia;uxwlhnl "

lla2
by, = el
& s llw2k+1 ” B

where Bi41 and Bk+1 are chosen > 0, so that {|axs1]| = [|wesa |l = 1.

Note also that if the initial b and w vectors that start the iteration are unit vectors, then

at every step, all vectors, a, b, z, and w will be unit length.

13.a There are many other iterative algorithms besides (13.27) that have decompositions
‘ (Theorem 13.7) as equilibrium points. For instance, simply rearranging the order of

our iteration in (13.27) will yield a different algorithm, yet decompositions are still
the equilibrium points. What we really want is an algorithm where the only stable

Al

" equilibrium points are decompositions with large (relative to u(M)) converged 3

-

values. Other iterations schemes may be better suited toward this goal - discovering

LY
.‘

them will give a better lower bound algorithm.

P

AL

Potential problems are:

o Mb, =0 (M*2 = 0), then a4y (wry1) is not well defined.

¢ aj, w1, =0, then the vectors z;,,, and/or by,,, are not well defined.

FeE

o Either ||w,,|| = 0 or ||as, || = 0, making b;, and/or 23, not well defined.

The heuristic fix when any of these happen is to restart the algorithm at a different

initial condition.

A

)'.:. 13.c If evex:ythin‘g goes ok, and all of the indexed quantities converge, then we must :t:
i have § = . This is easy to see. Suppose the equations in (13.26) are satisfied SN

i % (convergence of the algorithm in (13.27)), but the 4 associated with 4 and a is 3 and DY
the 3 associated with z and w is 4. The converged equations imply that there exists _., :

a @ € Q and D € D such that QDM D' (Db) = 3(Db) and (QDM D) (Db) = 'E "

AN

B (Db). Since the B’s are real, they must be equal.

. o , e R I B N UL PR ORI T8 W BULITR WOl Jie LV IR N0 I I, |
ARl a” B0 RAASASASS A A Al "' A "‘""“ A ".'. Lttt & * ".".*'- 0,50,
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13.d e Ifthereis only the first block, which is a scalar times identity block, the iteration
would be a power iteration for the largest (in magnitude) eigenvalue of the
matrix M. Since y for 1 scalar times identity block is the spectral radius, the
algorithm we have proposed reduces to a valid algorithm in the special case of
1 scalar times identity block.

If there is only the second block, which is a full block, the iteration becomes
a eigenvalue power algorithm for M*M, hence it will give the largest singular
value of M. Again, with respect to this specific block structure, this is what we

want.

[CSA R

Hence, the iteration we have proposed is a even mix of two separate, well understood
iterations. Both of these converge to the largest eigenvalue/singular value. Therefore,

X

we are led to guess (incorrectly) that this algorithm will converge to the largest 3

for which a decomposition described in Theorem 13.4 exists.

. %A

Extensive computational experience has led to the following conclusions:

%
2

.

. The difficulties described in 13.b above do not seem to occur in practice. While it
is easy to construct matrices where these problems happen, running the algorithm
on frequency responses of actual closed loop systems has not been a problem.

. Limit cycles occur more often when there are large scalar times identity blocks. The
presence of a stable limit cycle does not immediately give rise to a lower bound for

p.

. If s = 0 (and often times when s > 0), the algorithm usually performs well, con-
verging quickly, and providing a lower bound which is better than p(M). We have
successfully run tests on 40 x 40 complex matrices with up to 40 complex uncertain-

ties.

. The promising properties described above are not always true. We have
examples of a stable equilibrium point with the corresponding 8 < p (M). With lack
of any further insight, we do not bother to reproduce this here. The block structure
was five 1 x 1 blocks.

. In general, there are several stable equilibrium points, with different values of o.
This is to be contrasted with the conventional power algorithms for p and &, where

only the largest ones are stable.
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13.5 Choosing starting vectors

This section heuristically addresses the question of “what should the starting vectors be?”
To motivate what follows, suppose that u(M) = Diél}; & (DM D'l), and that the infimum
is achieved by D,. Then, from Theorem 13.4, we must have 0 € V D.MD: 5+ Lherefore, if

M := D,MD;' = pUV* + U,Z,V; (13.28)

is a singular value decomposition, there is a 7 € C™ and @ € @ such that

MVn = uQVy
s (13.29)
M*(QVn) = uVn
Hence, with respect to M, (which has (M) = u(M)), the vectors
b:=V
" (13.30)
w:=Vnp

are the correct vectors for the decompostion. We therefore propose the following.

1. Using a cheap method, [Osb], find a D,, that nearly minimizes Di%f; & (DM D"’)

2. Absorb this into M, ie., define M := D,,M D}
3. choose b; = w; to be a right singular vector associated with & (M )

4. perform the iteration on M with these starting vectors
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To conclude, we analyze the robustness of a nominally stable system subject to struc-

tured perturbations. The example has no physical interpretation, and is intended only to

illustrate the various robustness theorems we have presented.

The system G (which can be interpreted as F; (P(s), K(s)) as in the previous section) is

given below. It has 4 states, and 9 inputs and 9 outputs.

Matrix : G.a
states 4
x1 x2
x1 -6.405¢-01 -5.471¢+00
x2 0.000e+00 -3.000e+00
3 2.198e+00 -5.098¢+00
x4 -1.987e4+00 -6.756¢+00
Matriz : G.d
states 4 inputs 9
ul u2
xl 5.336e-01 0.000e+00
x2 0.000e+00 0.000e+00
x3 5.336e~01 0.000e+00
x4 0.000e+00 §5.338¢-01
Matrix : G.c
states 4 outputs 9
x1 x2
y1 2.500e-01 0.000e+00
y2 0.000e+00 2.500e¢-01
¥3 0.000e+00 0.000e+00
y4 0.000e+00 5.000e-01
¥5 0.000e+00 §5.000e-01
y6 0.000e¢+00 0.000e+00
y7 0.000e+00 1.500e+00
y8 0.000e+00 0.000e+00
¥9 0.000e+00 -1.000¢+00

The first 8 inputs and outputs
3,f=0,ry =3,r, = 2,13 =3.

~4.185e+00

0.000e+00
=2.627¢+00
=-6.384¢+00

.000e+00
.000e+00
.3360-01
0Q0e+00

o »n oo

.500e-01
.000e+00
.000e+00
.000e+00
.000e+00
0.000e4+00
0.000e+00
1.500e+00
0.000e+00

o OO0 O0ON

x4

.000e+00
.185¢+00
.558e+00

= & ON

9.~§.°
:

x4
.000e+00
.000e+00
.500e-01
.000e+00
.000e-01
.500¢+00
.000e+00
.5006+00
.000e+00

s O O NO O

us
0.000e+00
2.668¢-01
0.000e+00
0.000e+00

ué
0.000e+00
8.893e-02
0.000e+00
0.000e+00

a7 us
0.000e+00 0.000¢+00
0.000e4+00 0.000e+00
0.000e+00 0.000e+00
-8.893e-02 8.893e~02

u9
7.000e-01
7.000¢~01
7.000e-01
7.000e-01

are associated with the perturbation structure, A, s =

The last input and output correspond to the exogenous

disturbance and resulting error. Hence, for robust performance calculations, we will

append a 1 x 1 full block to A for the performance calculation. For notational purposes,

we partition G(s) into

G =

Gll G12
G21 G22

where G11(s) is 8 x 8, and Ga(s) is 1 x 1.
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We first calculate the robustness with respect to linear, time invariant perturbations, using
the frequency domain techniques described in the section 11. This is done via a p test on
Gu(jw). At each frequency point, we calculate the & (DM D™') upper bound, and a lower
bound using the algorithm described in section 13.

e Figure 14.1 is simply the singular values of Gj;(jw) versus w. This implies that
for any unstructured (any 8 x 8), stable perturbation, with induced norm from
Ly — Lj less than 333, the perturbed closed loop system is stable. The Nyquist
argument also shows that there is a linear, time invariant, unstructured, stable

perturbation, A, with sup & (A(jw)) = 5%; that does cause instability.
we€R )

e Next, we calculate upper and lower bounds for x(Gi1(jw)), with respect to the
block structure A := {diag[é;/]5,82]2,83]3) : 6; € C}. The upper bound is based
on the generalized gradient material from section 6.1, and the lower bound is the
iterative procedure described in section 13. These two curves are nearly equal, and
are shown in Figure 14.2. This implies that for FDLTI perturbations A(s) with the
correct structure, the stability is preserved as long as [|A(s)[le < 557, and there is

a perturbation on that boundary that does cause instability.

q 0.8 l
T w(Guliw))

3(Gyy(jw)) \

3] P BN
R N
NN N

N/

T T T T T 0.0 =TTy T TTT T T T TYTTY

1072 1071 1 10 102 1072 107! 1 10 102

frequency (radians/sscond) traquency (radians/second)

Figure 14.1 Frequency Response Singular Value Plot Figure 14.2 Frequency Response U plot

e What about performance? Nominally, the transfer function G2 describes the per-
formance, and this is shown in Figure 14.3. It has a peak value of 0.83. Under
perturbations this becomes F, (G,A). To analyze the degradation of performance
due to the uncertainty, we use theorem 11.4, and an augmented block structure A

A := {diag[A,6,] : A € A6, € C} (14.2)

A p plot of uz (G(jw)) is shown in Figure 14.4. Applying a scaled version of theorem

3 » LTS Pl W) Nen LT AT P Pl Mo LR, - . "
"‘:“IJ LW M N .\\A~|.A 1B Vb! Q.-‘b‘.'l AOACN i A4 1A AANIAN S ) M) { Rig Mo Ml N n‘..i X [ Yop ) V‘. > » o ...l..‘ l'-"o .-’
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Figure 14.3 Nominal Disturbance to Error Frequency Response
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11.4 implies that for any structured A(s) with [JA(s)|lw < 135, the perturbed loop

remains stable (we already knew that for an even greater radius from the u test on
Gn), and, the || - || norm of F, (G, A) is guaranteed to be < 1.18.

1.0 .
T 1.2%

[Gaa(jw)| #3(G(jw)) A

1.00

P

6.0 T Y T YT T T T T 0.00 T T Ty T

1072 107! 1 10 102 1072 107! 1 10

frequency (radians/second) freq y lradians/ d)

Finally, we consider robust stability to time varying perturbations, using the optimal
constant D scaling result from section 10 to minimize the conservatism of the small gain
theorem, by taking into account the structure. This will give a sufficient condition for
robust stability to time varying, and also cone bounded, nonlinear perturbations as well.
(The correct formulas for continuous time systems are given in the appendix, and are
in the same spirit as (10.9) and (10.10)). Everything pertains to Gy1, since we are only
concerned with stability. From Figure 14.2, we know that the optimal value satisfies

Jaf 1DG(s)D ™ oo 2 sup inf & (D.Gn(jw)D,") = 0.64 (14.3)

We performed a 1 dimensional search to find the correct value of v (in equation (10.10)).
Our rather crude gradient algorithm indicates that v € (0.68,0.685). This is quite close
to the frequency varying optimal. The constant D scaling we get from setting a = 0.685

is given below.

Natrix : D.opt BLOCK DIAGONAL rows 8 columns 8

1 2 3
1 1.113e+02 -7.359¢+01 6.100e+00
2 -2.682¢+01 -1.638¢+01 5.527e+01
3 6.537¢+00 7.397¢+01 3.210e+01

4 5

4 3.716¢+01 -3.139e+01
5 4.586e+01 1.975e+01

' -

YT T 7T

(LA s e B o2 SRR LA NN

Figure 14.4 u Plot for Robust Performance
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) 7 8
6 3.118¢+00 ~1.112+01 1.115e+01
7 6.516¢+00 -2.682¢+00 -3.690e+00
8 1.623¢+01 9.812¢+00 -85.816e+00

If we scale G1;(jw) with this constant scaling Figure 14.5 results. Note that the problem
is of the sort
Ii)relg sup o [func(D,w)]. (14.4)
all o;
We expect coalesced behavior at the minimum, and this is exactly what we have. In this
instance, though, the coalesced behavior is with respect to the w variable - Figure 14.5
shows this very clearly.

0.8
a(Do,.G||(jw)D;P‘.)

—

TN
BN
T

0.2 \
0.0 e %ﬁm

-2 107} 1 10 10

2

frequency {radians/second)

Figure 14.5 Singular Value Plot with Optimal, Constant D Scales

As we noted, this example has no physical significance, it merely demonstrates several of
the different ideas we have covered in this report, namely frequency domain, and state
space p techniques, as well as the optimal constant scaling material of section 10 for time
varying perturbations. Several realistic examples using 4 have appeared in the literature,
including [DoyLP] and [DoySE]. The emphasis in each of these is a particular example -
the various uses and interpretations possible with the different u calculations are not the
main issues.
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15 Appendix ¢
)
V.
15.1 Star Products o
3
Recall the example from section 8.3.1 and the results on uncertain difference equations in R
section 9. Both of these were done in discrete time, since in that domain, the unit disk -
7
is important, and disks are what u is all about. This section shows that the well known 1
bilinear transformation yields resuits analogous to the above for continuous time systems. ~ t
We begin with a generalization of the LFT, called “the star product” which is found in 'j >
[Red]. )
Suppose @@ and M are two complex matrices, which we partition as iy ":
M. e
Q = Qll QIZ M= 11 M12 “:: :
Rn Qzn My My .
..k
s
We are a little cavalier about the dimensions here. We only require that the matrix product ;‘Q b,
A w0l
(@22 M;; makes sense and is square. Obviously then, the product M,;@,, also makes sense "o
and also is square. If the matrix I — Q2M,; is invertible, then we say the star product b \
Q*M, is well defined, and is given by - 3
"
F(Q, M, I-M, M 0N
QM := [ (@ u)-1 Q12 ( 11Q22) 12 (15.1) o
Mz (I~ Q22 M)~ Qn F,(M,Q2) -
E
Note that this definition is dependent on the partitioning of the matrices @ and M above. 2 -
In fact it may be well defined for one partition and not well defined for another. However, *
we will not explicitely show this dependence, as it is always clear from the context. N E
'n"\ By
AR,
In a block diagram, the star product (15.1) has a natural interpretation: it is simply the *
matrix relating [ Zl to Zl as shown below. N
2 2 oo ¢
u, v, \
L R n:
RGN
w z Yoo
)
RO B .
v
Figure 15.1 Star Product of Two Matrices —” -:
YN
The assumption that [ — @Q.2M;; is invertible implies that for any vectors u; and u,, \
there exist unique vectors z and w satisfying the loop equations. When working with star -
products, it is much easier to manipulate the diagrams, rather than the equations, since -&‘ N

\ P 4|
% , v - P W ' , ) ] X - W %
AP S ST AT AR SO T .\ n‘.‘l AN ARSI ARG, ""q M % .M'!'- .Ou‘?la‘.‘o‘.ﬁ ' NN '.’.'!N w '." .'n. ’tﬁ AN ) ?N‘!‘-‘!l. !
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o
the diagrams are so intuitive, however a little care must be exercised. Consider the loop ;-:-".
! below. . N .,
0 K
R v
& ~
~
M A
o
v A
Uy S ‘ Va ;:"
F‘, « Lo L N
Figure 15.2 Associativity of Star Products P
o, >
ﬁ; Should this be viewed as (Q*M)*S or Qx(M=xS)? Well, when looking at it pictorially, :‘:' :
it appears to make no difference. But, we have to be careful about the invertibility of the N
? necessary matrices. For example, suppose all the matrices are 2 x 2, and that @,; = 0.5, ::l’:
u o
M= [ } i ], and S;; = 1 (the rest of Q and S are irrelevent). Certainly QM is okay, o
and since [@Q*M]y; = 2, the quantity 1—[Q*M],2S511 is invertible, and therefore (Q* M )*S !":i
i is well defined. But, since the star product M *S is not even defined, we cannot compare 2y
Ny

the first expression, (Q*M)*S to @Q*(Mx%S).

i
o,

-

So, if we want to have associativity (which is what to need to manipulate the diagrams,

& rather than working via the fairly messy definition), both @M and M %S should be well ;:'
::.'; defined. This requires that both I — @Q;2M;; and I — M,,S;; are invertible. In this Y )
case, the next lemma and corollary show that if either (Q+*M)*S or if Q*(M*S) is well N
F defined, then they are equal. h .
2 e,
o
@’ Lemma 15.1 If both I — Q;2M,; and I — M;,S;, are invertible, then the quantity ) :3.:
I - F,(M,Qq)Snu is invertible if and only if I — F; (M, S1;) Q22 is invertible. Sy

| J
-
' Proof: We manipulate determinants: det [l — F, (M, Q,2) S11] # 0 ) .:-
XX
- _ Eaty
":. e« det{l - [Mzz + My Q2 (1 — My Qa2)™! Mn] 511} #0 o
 det{I — MaSi — MnQa2 (I — M11Q22)™" M12511} #0 e ;
% & det{I — MnQn (I -~ MuQx)" MiSu (I -~ MnSu)™ } #0 !

38 - - \x
~ e det{I = My3Sy, (I = M2oSu)™" MnQaa (I = MuyQ22) ™'} #0 o
>, o det {1 — MQy — M12S1 (I — MpSu)™ 1"[21Q22} #0 g
r. — det{I — F;(M,S51)Qzn}#0} o
@ This implies the corollary. o
' :‘(
L %
2

“4

] W o Coa W ¥ PRIV . L " PR LN (Y " a¥a" -'-'('r.‘-'.d'd'{-‘,l"-’-"(-l‘.'fnk‘u‘_n'.“-.'\qfq'rs
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Corollary 15.2 Let Q, M, and S be given. If QxM and M *S are each well defined (ie.
I — Q22 My, and I — M2, 51, are invertible), then (Q+xM)=*S is well defined if and only if -
b Q=*(M=S) is well defined. Furthermore, if they are well defined, then they are equal.

s X Ys
PRS0, By

These star products have many interesting properties discovered in [Red]. We will not

pursue them here. In the next section though, we use star products to translate the

discrete time results from sections 8.3.1 and 9 to analogous continuous time results. —;
. 2o -]
15.2 Continuous time results 2
’ Al
: In this section we show that the well known bilinear transformation, along with the star EQ )
: product, yields results for continuous time systems. - 3
-,

Let n > 0 be an integer, and define a matrix B by

) | I V2L i
Ve, I,

i b
> A
Suppose A € C™*". 1t is simple to relate the eigenvalues of A and F; (B, A). In particular, o

A

. Lemma 15.3 Let A;,i = 1,... ,n, denote the eigenvalues of A. Then Re()\;) < 0 for each :E'.; .:’
¢ if and only if I — A is invertible, and p [F} (B, A)] < 1. he

! g
E Similarly, we have a matrix version of the bilinear transformation. 3

Lemma 15.4 Suppose A € C* ", Let Ay := %(A + A*). Then Ay < 0 if and only if e

I — A is invertible and 5 (F; (B, A)) < L. : 7

D
L J
': Proof: Suppose that I — .1 is invertible and & (F; (B, A)) < 1. Then
5(Fi(B,A) <1 if a((I+A)(I-4)") <1 o
: iff I—AY'U+AYI+A)I-A)"<I g
: iff (I+A°)Y(I+A)<(I-A")(I-A) o
if A*+A<-A"-A L

if Ay <0 Y.
Reversing the steps gives the proof for the other direction. } ) v}
ok
LA 3
o {J

¥
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Now, let us apply this to a class of uncertain differential equations, as we did for the discrete
case in section 9. To set it up, let M € C("+m)x(n+m) be given, along with a m x m block
structure A, such that us (Ma;) < 1. We are interested in solutions z(t) € C" that evolve
according to

&= F(M,A(t)) z

where the function A(:) is piecewise continuous, say. We assume that the nominal system
is known to be stable, hence all of the eigenvalues of M;; have negative real parts. Consider
the following three assumptions on A(-)

(a.1) Forallt, A(t) e A

(a.2) Forallt, a(A(t)) <1

(a.3) A(:) is constant - it does not vary with ¢

Now, (a.3) implies that the system is time invariant, so we just need to check that the
dynamic matrix, F; (M, A) is hurwitz for each allowable A. Equivalently, via Lemma 15.3,

we need to check that p[F; (B, F;(M,A))] < 1 for all allowable A. This is displayed in
block diagram form below on the left.

— — r————=——-— !
+— ——
| B |

M~ ———= =M I !

| M | : i

| | [

| | | M |
| n i e |

I [

L__‘t— __ _ A

Figure 15.3 Uncertain Differential Equations

We would like to exchange the order, and evaluate whether p[F; (BxM),A] < 1 for all
A, because this is just a u test on BxM. This is illustrated above right. Theorem 15.5
handles this.

Theorem 15.5 Define A := {diag[6I,,A]:6 € C,A € A}. Then, with the above as-
sumptions, the differential equation + = F; (M, A)z is stable for all fixed A € A, with
d(A)<1lifandonly if ug (BxM) < 1.

Proof: Since the nominal matrix M;; has all of its eigenvalues in the left half plane, the
star product B+M is well defined. Also by assumption, pa (Mz2) < 1, hence for every
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4 ]
b 3 4
[ N
! A € A, with d(A) <1, the LFT F; (M, A) is well defined. Hence, the standing - !
" assumptions of lemma 15.1 (or corollary 15.2) are satisfied. "¢
. ;{’ !
3', — By hypothesis, if A € A, and 5(A) <1, then ] — [BxM],, A is invertible, and hence
: so is I — F;(M, A). Therefore, by corollary 15.2, for all such A, we have 'T: y
3 w8
‘ Fi(B,Fy (M, A)) = Fi(BxM, ) s
bud
. f’\ 4
y Therefore Ia .
B = M,A .
, max p[Fi( v Fi (M, A))] max p[F}(B+M,A)] <1 %4
3 a(a)<1 3(a)<t 4
. where the last inequality comes from the assumption that uz (B*M) < 1, and the ,,.3 i
‘ robust performance theorem, 5.2, applied to B+ M, with the block structure A. ';y
N Hence, using lemma 15.1 shows that the eigenvalues of F; (M, A) are in the left half ]
plane for each A. 3
: — Same type of argument. { \
H 3
) Similar results are obtained for the other situations. We collect them here. - E
D
Lemma 15.6 There is a single Lyapunov matrix for the entire set of “A” matrices .[
o
{F(M,A): A€ As(A)<1) !
if and only if ;'7: g
) imf ai (17 0] ey [T 0] <1 3
;. Telgnxn /‘A 0 I 0 I (3
% Tinvertible @ :
p where A := {diag[A;,A]: A; € C™™ A € A}. A
; i ﬁ ‘,
! Lemma 15.7 Let D := {diag[D;I,, D] : D, € C***, invertible, D € D}, where D is the “
' appropriate scaling set for the block structure A. Then a sufficient condition for Lemma 8 X
' 15.6 is NN
Y inf_&(D BxM D'l) <1 v
\ DeD 3} h
n ‘{5 J
B We can also use B and the star product to switch between z and s domains for transform &
! results. ‘.
R "
A & \
) \
: ‘
L
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Lemma 15.8 Let A, B,C,D be a state space realization of a stable, continuous time
transfer function G(s), with m inputs and m outputs. We assume that the matrix A is
Hurwitz. Define the matrix M as

<[ 3

C D
Let A := {diag [611,,A2]: 6, € C,A € C™*™}, Then
IGllo <1 iff pa (BxM) <1
Lemma 15.9 Let G(s) := D + C (sI —~ A)™! B be a m input, m output, rational, stable

transfer function. Suppose A, is a m x m block structure as in (3.1), and let D, be the
corresponding scaling set. For a > 0, define

«a. | A B
M* = [aC aD ] (15.2)
Define v € R by
. o (| Dy 0 | DY O
7.—?;13 {a.D‘hgxe{ﬁblea([ 0 Dg](B*M )[ 0 D ]) <1}. (15.3)
D2€D;
Then 1
. P _1 —_
Dlzlét';?z fzg 4 (DgG(S)D2 ) = 7ﬂ (15.4)
Re(s)20

15.3 Convexity Lemma

The following lemma gives a sufficient condition for a continuous function from R— R to

be convex. It is fairly intuitive, and comes from [ChuD]

Lemma 5.2 Let f : R —» R be a continuous function, and suppose for each t, € R,
there exists function g, € C? (continuously twice differentiable), g;, : R — R, such that
f(@t,) = g, (to), f(t) 2 g.,(t) for allt € R and %ﬁ.lt—t > 0. Then f is a convex function.

Proof: Suppose f is not convex. Then there exist z,y € R, z < y, and X € (0,1) such
that

FU =Xz +2y) > (1 -A)f(2) + A f(y)
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3 Let B be the largest difference this assumes, ie. ‘.J
‘
N i
®
N f= max [/ ((1-e)s+ay)~(1-a)f (2) ~af (¥) 2
§ |
,:, and let A be the largest value in [0,1] that achieves 8. Obviously, since § > 0, &
L - - -
:: A € (0,1). Define w := (1 — A)z + A\y. Hence f is continuous, satisfies f(w) = g,
) and lies in the shaded region as shown below (shaded region includes its boundary =
> for t < w, and does not include its boundary for ¢ > ). -
» -
) L
2 f® 3
4 ﬁ
} )
t
b -
o R
) t ]
.:l w :)::
:::' Figure 15.4 Diagram for Lemma 5.2
W £
. Now, let ¢ be any function in C? with g(w) = 8, and %l > 0. Obviously, there e
f t=w
e are points w arbitrarily close to w such that f(w) < g(w). Scu)J, by contrapositive, we »
: have proven the lemma. § W)
b
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